Related concepts (51)
Kernel (set theory)
In set theory, the kernel of a function (or equivalence kernel) may be taken to be either the equivalence relation on the function's domain that roughly expresses the idea of "equivalent as far as the function can tell", or the corresponding partition of the domain. An unrelated notion is that of the kernel of a non-empty family of sets which by definition is the intersection of all its elements: This definition is used in the theory of filters to classify them as being free or principal.
Orthodox semigroup
In mathematics, an orthodox semigroup is a regular semigroup whose set of idempotents forms a subsemigroup. In more recent terminology, an orthodox semigroup is a regular E-semigroup. The term orthodox semigroup was coined by T. E. Hall and presented in a paper published in 1969. Certain special classes of orthodox semigroups had been studied earlier. For example, semigroups that are also unions of groups, in which the sets of idempotents form subsemigroups were studied by P. H. H. Fantham in 1960.
Semigroup with three elements
In abstract algebra, a semigroup with three elements is an object consisting of three elements and an associative operation defined on them. The basic example would be the three integers 0, 1, and −1, together with the operation of multiplication. Multiplication of integers is associative, and the product of any two of these three integers is again one of these three integers.
Generalized inverse
In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element x is an element y that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for a wider class of matrices than invertible matrices. Generalized inverses can be defined in any mathematical structure that involves associative multiplication, that is, in a semigroup.
Commutative magma
In mathematics, there exist magmas that are commutative but not associative. A simple example of such a magma may be derived from the children's game of rock, paper, scissors. Such magmas give rise to non-associative algebras. A magma which is both commutative and associative is a commutative semigroup. Let , standing for the "rock", "paper" and "scissors" gestures respectively, and consider the binary operation derived from the rules of the game as follows: For all : If and beats in the game, then I.e.
Medial magma
In abstract algebra, a medial magma or medial groupoid is a magma or groupoid (that is, a set with a binary operation) which satisfies the identity or more simply for all x, y, u and v, using the convention that juxtaposition denotes the same operation but has higher precedence. This identity has been variously called medial, abelian, alternation, transposition, interchange, bi-commutative, bisymmetric, surcommutative, entropic etc. Any commutative semigroup is a medial magma, and a medial magma has an identity element if and only if it is a commutative monoid.
Presentation of a monoid
In algebra, a presentation of a monoid (or a presentation of a semigroup) is a description of a monoid (or a semigroup) in terms of a set Σ of generators and a set of relations on the free monoid Σ∗ (or the free semigroup Σ+) generated by Σ. The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory. As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system).
Flexible algebra
In mathematics, particularly abstract algebra, a binary operation • on a set is flexible if it satisfies the flexible identity: for any two elements a and b of the set. A magma (that is, a set equipped with a binary operation) is flexible if the binary operation with which it is equipped is flexible. Similarly, a nonassociative algebra is flexible if its multiplication operator is flexible. Every commutative or associative operation is flexible, so flexibility becomes important for binary operations that are neither commutative nor associative, e.
Epigroup
In abstract algebra, an epigroup is a semigroup in which every element has a power that belongs to a subgroup. Formally, for all x in a semigroup S, there exists a positive integer n and a subgroup G of S such that xn belongs to G. Epigroups are known by wide variety of other names, including quasi-periodic semigroup, group-bound semigroup, completely π-regular semigroup, strongly π-regular semigroup (sπr), or just π-regular semigroup (although the latter is ambiguous).
Trivial group
In mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usually denoted as such: or depending on the context. If the group operation is denoted then it is defined by The similarly defined is also a group since its only element is its own inverse, and is hence the same as the trivial group.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.