Kernel (set theory)In set theory, the kernel of a function (or equivalence kernel) may be taken to be either the equivalence relation on the function's domain that roughly expresses the idea of "equivalent as far as the function can tell", or the corresponding partition of the domain. An unrelated notion is that of the kernel of a non-empty family of sets which by definition is the intersection of all its elements: This definition is used in the theory of filters to classify them as being free or principal.
Orthodox semigroupIn mathematics, an orthodox semigroup is a regular semigroup whose set of idempotents forms a subsemigroup. In more recent terminology, an orthodox semigroup is a regular E-semigroup. The term orthodox semigroup was coined by T. E. Hall and presented in a paper published in 1969. Certain special classes of orthodox semigroups had been studied earlier. For example, semigroups that are also unions of groups, in which the sets of idempotents form subsemigroups were studied by P. H. H. Fantham in 1960.
Semigroup with three elementsIn abstract algebra, a semigroup with three elements is an object consisting of three elements and an associative operation defined on them. The basic example would be the three integers 0, 1, and −1, together with the operation of multiplication. Multiplication of integers is associative, and the product of any two of these three integers is again one of these three integers.
Pseudo-inverseEn mathématiques, et plus précisément en algèbre linéaire, la notion de pseudo-inverse (ou inverse généralisé) généralise celle d’inverse d’une application linéaire ou d’une matrice aux cas non inversibles en lui supprimant certaines des propriétés demandées aux inverses, ou en l’étendant aux espaces non algébriques plus larges. En général, il n’y a pas unicité du pseudo-inverse. Son existence, pour une application linéaire entre espaces de dimension éventuellement infinie, est équivalente à l'existence de supplémentaires du noyau et de l'image.
Commutative magmaIn mathematics, there exist magmas that are commutative but not associative. A simple example of such a magma may be derived from the children's game of rock, paper, scissors. Such magmas give rise to non-associative algebras. A magma which is both commutative and associative is a commutative semigroup. Let , standing for the "rock", "paper" and "scissors" gestures respectively, and consider the binary operation derived from the rules of the game as follows: For all : If and beats in the game, then I.e.
Medial magmaIn abstract algebra, a medial magma or medial groupoid is a magma or groupoid (that is, a set with a binary operation) which satisfies the identity or more simply for all x, y, u and v, using the convention that juxtaposition denotes the same operation but has higher precedence. This identity has been variously called medial, abelian, alternation, transposition, interchange, bi-commutative, bisymmetric, surcommutative, entropic etc. Any commutative semigroup is a medial magma, and a medial magma has an identity element if and only if it is a commutative monoid.
Presentation of a monoidIn algebra, a presentation of a monoid (or a presentation of a semigroup) is a description of a monoid (or a semigroup) in terms of a set Σ of generators and a set of relations on the free monoid Σ∗ (or the free semigroup Σ+) generated by Σ. The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory. As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system).
Algèbre flexibleEn mathématiques, en particulier en algèbre, une opération binaire • sur un ensemble est dite flexible si l'identité flexible est satisfaite : pour tous a et b dans l'ensemble. Un magma (c'est-à-dire un ensemble muni d'une opération binaire) est flexible si l'opération binaire dont il est muni est flexible. De même, une algèbre non associative est flexible si son produit est flexible.
EpigroupIn abstract algebra, an epigroup is a semigroup in which every element has a power that belongs to a subgroup. Formally, for all x in a semigroup S, there exists a positive integer n and a subgroup G of S such that xn belongs to G. Epigroups are known by wide variety of other names, including quasi-periodic semigroup, group-bound semigroup, completely π-regular semigroup, strongly π-regular semigroup (sπr), or just π-regular semigroup (although the latter is ambiguous).
Groupe trivialEn mathématiques, un groupe trivial est un groupe constitué du seul élément e. Tous les groupes triviaux sont isomorphes, c'est pourquoi on dit souvent le groupe trivial. L'opération de groupe est e + e = e. L'élément e est le neutre, et le groupe est abélien et même cyclique. On ne doit pas confondre le groupe trivial avec l'ensemble vide (qui n'a pas d'élément, donc pas d'élément neutre, si bien qu'il ne peut pas être un groupe). Le groupe trivial est « le » groupe cyclique d'ordre 1, noté C1.