Turingery or Turing's method (playfully dubbed Turingismus by Peter Ericsson, Peter Hilton and Donald Michie) was a manual codebreaking method devised in July 1942 by the mathematician and cryptanalyst Alan Turing at the British Government Code and Cypher School at Bletchley Park during World War II. It was for use in cryptanalysis of the Lorenz cipher produced by the SZ40 and SZ42 teleprinter rotor stream cipher machines, one of the Germans' Geheimschreiber (secret writer) machines. The British codenamed non-Morse traffic "Fish", and that from this machine "Tunny" (another word for the tuna fish).
Reading a Tunny message required firstly that the logical structure of the system was known, secondly that the periodically changed pattern of active cams on the wheels was derived, and thirdly that the starting positions of the scrambler wheels for this message—the message key—was established. The logical structure of Tunny had been worked out by William Tutte and colleagues over several months ending in January 1942. Deriving the message key was called "setting" at Bletchley Park, but it was the derivation of the cam patterns—which was known as "wheel breaking"—that was the target of Turingery.
German operator errors in transmitting more than one message with the same key, producing a "depth", allowed the derivation of that key. Turingery was applied to such a key stream to derive the cam settings.
Lorenz cipher
The logical functioning of the Tunny system was worked out well before the Bletchley Park cryptanalysts saw one of the machines—which only happened in 1945, shortly before the allied victory in Europe.
The SZ machines were 12-wheel rotor cipher machines which implemented a Vernam stream cipher. They were attached in-line to standard Lorenz teleprinters. The message characters were encoded in the 5-bit International Telegraph Alphabet No. 2 (ITA2). The output ciphertext characters were generated by combining a pseudorandom character-by-character key stream with the input characters using the "exclusive or" (XOR) function, symbolised as "" in mathematical notation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
William Thomas Tutte OC FRS FRSC (tʌt; 14 May 1917 – 2 May 2002) was an English and Canadian codebreaker and mathematician. During the Second World War, he made a brilliant and fundamental advance in cryptanalysis of the Lorenz cipher, a major Nazi German cipher system which was used for top-secret communications within the Wehrmacht High Command. The high-level, strategic nature of the intelligence obtained from Tutte's crucial breakthrough, in the bulk decrypting of Lorenz-enciphered messages specifically, contributed greatly, and perhaps even decisively, to the defeat of Nazi Germany.
The Lorenz SZ40, SZ42a and SZ42b were German rotor stream cipher machines used by the German Army during World War II. They were developed by C. Lorenz AG in Berlin. The model name SZ was derived from Schlüssel-Zusatz, meaning cipher attachment. The instruments implemented a Vernam stream cipher. British cryptanalysts, who referred to encrypted German teleprinter traffic as Fish, dubbed the machine and its traffic Tunny (meaning tunafish) and deduced its logical structure three years before they saw such a machine.
Fish (sometimes FISH) was the UK's GC&CS Bletchley Park codename for any of several German teleprinter stream ciphers used during World War II. Enciphered teleprinter traffic was used between German High Command and Army Group commanders in the field, so its intelligence value (Ultra) was of the highest strategic value to the Allies. This traffic normally passed over landlines, but as German forces extended their geographic reach beyond western Europe, they had to resort to wireless transmission.
To introduce several advanced topics in quantum physics, including
semiclassical approximation, path integral, scattering theory, and
relativistic quantum mechanics