In neuroanatomy, habenula (diminutive of Latin habena meaning rein) originally denoted the stalk of the pineal gland (pineal habenula; pedunculus of pineal body), but gradually came to refer to a neighboring group of nerve cells with which the pineal gland was believed to be associated, the habenular nucleus. The habenular nucleus is a set of well-conserved structures in all vertebrate animals.
Currently, this term refers to this separate cell mass in the caudal portion of the dorsal diencephalon, known as the epithalamus, found in all vertebrates on both sides of the third ventricle. It connects the forebrain and midbrain within the epithalamus. It is embedded in the posterior end of the stria medullaris from which it receives most of its afferent fibers. By way of the fasciculus retroflexus (habenulointerpeduncular tract) it projects to the interpeduncular nucleus and other paramedian cell groups of the midbrain tegmentum.
Although they were predominantly studied for their demonstration of asymmetrical brain development and function, in recent years many scientists have begun to examine the habenular nuclei's role in motivation and behavior as it relates to an understanding of the physiology of addiction. Functionally, the habenula is involved in nociception, sleep-wake cycles, reproductive behavioural, and mood (see section on depression below). It is one of the few areas known to influence virtually all monoaminergic systems in the brainstem, such as dopamine, norepinephrine, and serotonin.
The habenula was traditionally divided into lateral (limbic) and medial (motor) parts. Detailed examination of the region in the cat, however, suggested that the lateral part should be further divided into ten distinct subnuclei and the medial into five distinct subnuclei.
Various species exhibit left-right asymmetric differentiation of habenular neurons. In many fishes and amphibians, the habenula on one side is significantly larger and better organized into distinct nuclei in the dorsal diencephalon than its smaller pair.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The reward system (the mesocorticolimbic circuit) is a group of neural structures responsible for incentive salience (i.e., "wanting"; desire or craving for a reward and motivation), associative learning (primarily positive reinforcement and classical conditioning), and positively-valenced emotions, particularly ones involving pleasure as a core component (e.g., joy, euphoria and ecstasy). Reward is the attractive and motivational property of a stimulus that induces appetitive behavior, also known as approach behavior, and consummatory behavior.
Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin ad, "near", and ren, "kidney") is more commonly used in the United Kingdom, whereas "norepinephrine" (from Ancient Greek ἐπῐ́ (epí), "upon", and νεφρός (nephrós), "kidney") is usually preferred in the United States. "Norepinephrine" is also the international nonproprietary name given to the drug.
Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction.
Delves into the world of neural interfaces, focusing on the implementation of invasive and non-invasive electrodes and the evolution of electrode technologies.
Explores brain circuits for sensory perception and external representation, covering thalamus communication, energy-saving mechanisms, inhibitory control, and time perception.
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
Social behaviors such as cooperation are crucial for mammals. A deeper knowledge of the neuronal mechanisms underlying cooperation can be beneficial for people suffering from pathologies with impaired social behavior. Our aim was to study the brain activit ...
The nucleus accumbens (NAc) is part of the ventral striatum and plays a major role in motivation and goal-directed behaviour. Increasing evidence implicates impairments in accumbal function in anxiety and depression, two conditions that are commonly accomp ...