Concept

Tower of fields

Summary
In mathematics, a tower of fields is a sequence of field extensions F0 ⊆ F1 ⊆ ... ⊆ Fn ⊆ ... The name comes from such sequences often being written in the form A tower of fields may be finite or infinite. Q ⊆ R ⊆ C is a finite tower with rational, real and complex numbers. The sequence obtained by letting F0 be the rational numbers Q, and letting (i.e. Fn+1 is obtained from Fn by adjoining a 2n th root of 2) is an infinite tower. If p is a prime number the p th cyclotomic tower of Q is obtained by letting F0 = Q and Fn be the field obtained by adjoining to Q the pn th roots of unity. This tower is of fundamental importance in Iwasawa theory. The Golod–Shafarevich theorem shows that there are infinite towers obtained by iterating the Hilbert class field construction to a number field.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.