A star catalogue is an astronomical catalogue that lists stars. In astronomy, many stars are referred to simply by catalogue numbers. There are a great many different star catalogues which have been produced for different purposes over the years, and this article covers only some of the more frequently quoted ones. Star catalogues were compiled by many different ancient people, including the Babylonians, Greeks, Chinese, Persians, and Arabs. They were sometimes accompanied by a star chart for illustration. Most modern catalogues are available in electronic format and can be freely downloaded from space agencies' data centres. The largest is being compiled from the spacecraft Gaia and thus far has over a billion stars.
Completeness and accuracy are described by the faintest limiting magnitude V (largest number) and the accuracy of the positions.
From their existing records, it is known that the ancient Egyptians recorded the names of only a few identifiable constellations and a list of thirty-six decans that were used as a star clock. The Egyptians called the circumpolar star "the star that cannot perish" and, although they made no known formal star catalogues, they nonetheless created extensive star charts of the night sky which adorn the coffins and ceilings of tomb chambers.
Although the ancient Sumerians were the first to record the names of constellations on clay tablets, the earliest known star catalogues were compiled by the ancient Babylonians of Mesopotamia in the late 2nd millennium BC, during the Kassite Period (c. 1531 BC to c. 1155 BC). They are better known by their Assyrian-era name 'Three Stars Each'. These star catalogues, written on clay tablets, listed thirty-six stars: twelve for "Anu" along the celestial equator, twelve for "Ea" south of that, and twelve for "Enlil" to the north. The Mul.Apin lists, dated to sometime before the Neo-Babylonian Empire (626–539 BC), are direct textual descendants of the "Three Stars Each" lists and their constellation patterns show similarities to those of later Greek civilization.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
In astronomy, the fixed stars (stellae fixae) are the luminary points, mainly stars, that appear not to move relative to one another against the darkness of the night sky in the background. This is in contrast to those lights visible to naked eye, namely planets and comets, that appear to move slowly among those "fixed" stars. The fixed stars includes all the stars visible to the naked eye other than the Sun, as well as the faint band of the Milky Way.
The Almagest ˈælmədʒɛst is a 2nd-century mathematical and astronomical treatise on the apparent motions of the stars and planetary paths, written by Claudius Ptolemy ( AD 100 – 170) in Koine Greek. One of the most influential scientific texts in history, it canonized a geocentric model of the Universe that was accepted for more than 1,200 years from its origin in Hellenistic Alexandria, in the medieval Byzantine and Islamic worlds, and in Western Europe through the Middle Ages and early Renaissance until Copernicus.
Alpha Centauri (α Centauri, Alpha Cen, or α Cen) is a triple star system in the southern constellation of Centaurus. It consists of three stars: Rigil Kentaurus (Alpha Centauri A), Toliman (B) and Proxima Centauri (C). Proxima Centauri is also the closest star to the Sun at 4.2465 light-years (1.3020 pc). Alpha Centauri A and B are Sun-like stars (Class G and K, respectively), and together they form the binary star system Alpha Centauri AB. To the naked eye, the two main components appear to be a single star with an apparent magnitude of −0.
Explores the recalibration of the cosmic distance ladder using accurate photometry and Gaia parallaxes, addressing challenges and potential refinements.
Context.Gaia's readout window strategy is challenged by very dense fields in the sky. Therefore, in addition to standard Gaia observations, full Sky Mapper (SM) images were recorded for nine selected regions in the sky. A new software pipeline exploits the ...
Les Ulis Cedex A2023
,
Context. The third Gaia Data Release (DR3) provided photometric time series of more than 2 million long-period variable (LPV) candidates. Anticipating the publication of full radial-velocity data planned with Data Release 4, this Focused Product Release (F ...
Context. Gaia DR3 has offered the scientific community a remarkable dataset of approximately one million spectra acquired with the radial velocity spectrometer (RVS) in the calcium II triplet region, which is well suited to identify very metal-poor (VMP) s ...