Tachyon condensationTachyon condensation is a process in particle physics in which a system can lower its energy by spontaneously producing particles. The end result is a "condensate" of particles that fills the volume of the system. Tachyon condensation is closely related to second-order phase transitions. Tachyon condensation is a process in which a tachyonic field—usually a scalar field—with a complex mass acquires a vacuum expectation value and reaches the minimum of the potential energy.
String dualityString duality is a class of symmetries in physics that link different string theories, theories which assume that the fundamental building blocks of the universe are strings instead of point particles. Before the so-called "duality revolution" there were believed to be five distinct versions of string theory, plus the (unstable) bosonic and gluonic theories.
SkyrmionIn particle theory, the skyrmion (ˈskɜrmi.ɒn) is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by (and named after) Tony Skyrme in 1961. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory.
Dimensional reductionDimensional reduction is the limit of a compactified theory where the size of the compact dimension goes to zero. In physics, a theory in D spacetime dimensions can be redefined in a lower number of dimensions d, by taking all the fields to be independent of the location in the extra D − d dimensions. For example, consider a periodic compact dimension with period L. Let x be the coordinate along this dimension. Any field can be described as a sum of the following terms: with An a constant.
Phenomenology (physics)In physics, phenomenology is the application of theoretical physics to experimental data by making quantitative predictions based upon known theories. It is related to the philosophical notion of the same name in that these predictions describe anticipated behaviors for the phenomena in reality. Phenomenology stands in contrast with experimentation in the scientific method, in which the goal of the experiment is to test a scientific hypothesis instead of making predictions.
String field theoryString field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms.
Nordström's theory of gravitationIn theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.
Sigma modelIn physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model.
Enumerative geometryIn mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory. The problem of Apollonius is one of the earliest examples of enumerative geometry. This problem asks for the number and construction of circles that are tangent to three given circles, points or lines. In general, the problem for three given circles has eight solutions, which can be seen as 23, each tangency condition imposing a quadratic condition on the space of circles.
Theodor KaluzaTheodor Franz Eduard Kaluza (kaˈluːt͡sa; 9 November 1885 – 19 January 1954) was a German mathematician and physicist known for the Kaluza–Klein theory, involving field equations in five-dimensional space-time. His idea that fundamental forces can be unified by introducing additional dimensions were reused much later for string theory. Kaluza was born to a Roman Catholic family from the town of Ratibor (present-day Racibórz in Poland) in the German Empire's Prussian Province of Silesia.