Dimensional reduction is the limit of a compactified theory where the size of the compact dimension goes to zero. In physics, a theory in D spacetime dimensions can be redefined in a lower number of dimensions d, by taking all the fields to be independent of the location in the extra D − d dimensions. For example, consider a periodic compact dimension with period L. Let x be the coordinate along this dimension. Any field can be described as a sum of the following terms: with An a constant. According to quantum mechanics, such a term has momentum nh/L along x, where h is Planck's constant. Therefore, as L goes to zero, the momentum goes to infinity, and so does the energy, unless n = 0. However n = 0 gives a field which is constant with respect to x. So at this limit, and at finite energy, will not depend on x. This argument generalizes. The compact dimension imposes specific boundary conditions on all fields, for example periodic boundary conditions in the case of a periodic dimension, and typically Neumann or Dirichlet boundary conditions in other cases. Now suppose the size of the compact dimension is L; then the possible eigenvalues under gradient along this dimension are integer or half-integer multiples of 1/L (depending on the precise boundary conditions). In quantum mechanics this eigenvalue is the momentum of the field, and is therefore related to its energy. As L → 0 all eigenvalues except zero go to infinity, and so does the energy. Therefore, at this limit, with finite energy, zero is the only possible eigenvalue under gradient along the compact dimension, meaning that nothing depends on this dimension. Dimensional reduction also refers to a specific cancellation of divergences in Feynman diagrams. It was put forward by Amnon Aharony, Yoseph Imry, and Shang-keng Ma who proved in 1976 that "to all orders in perturbation expansion, the critical exponents in a d-dimensional (4 < d < 6) system with short-range exchange and a random quenched field are the same as those of a (d–2)-dimensional pure system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related publications (7)

Measuring and modeling the motor system with machine learning

Alexander Mathis, Alessandro Marin Vargas

The utility of machine learning in understanding the motor system is promising a revolution in how to collect, measure, and analyze data. The field of movement science already elegantly incorporates theory and engineering principles to guide experimental w ...
2021

Large field excursions and approximate discrete symmetries from a clockwork axion

Riccardo Rattazzi

We present a renormalizable theory of scalars in which the low-energy effective theory contains a pseudo-Goldstone boson with a compact field space of 2 pi F and an approximate discrete shift symmetry Z(Q) with Q >> 1, yet the number of fields in the theor ...
Amer Physical Soc2016

Time-sliced perturbation theory for large scale structure I: general formalism

Sergey Sibiryakov, Diego Blas Temino, Mikhail Ivanov

We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables ...
Iop Publishing Ltd2016
Show more
Related concepts (2)
Supergravity
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.
String theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.