Summary
In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry. In geometry and in field theory, mathematicians ask whether or not a given oriented Riemannian manifold (M,g) admits spinors. One method for dealing with this problem is to require that M has a spin structure. This is not always possible since there is potentially a topological obstruction to the existence of spin structures. Spin structures will exist if and only if the second Stiefel–Whitney class w2(M) ∈ H2(M, Z2) of M vanishes. Furthermore, if w2(M) = 0, then the set of the isomorphism classes of spin structures on M is acted upon freely and transitively by H1(M, Z2) . As the manifold M is assumed to be oriented, the first Stiefel–Whitney class w1(M) ∈ H1(M, Z2) of M vanishes too. (The Stiefel–Whitney classes wi(M) ∈ Hi(M, Z2) of a manifold M are defined to be the Stiefel–Whitney classes of its tangent bundle TM.) The bundle of spinors πS: S → M over M is then the complex vector bundle associated with the corresponding principal bundle πP: P → M of spin frames over M and the spin representation of its structure group Spin(n) on the space of spinors Δn. The bundle S is called the spinor bundle for a given spin structure on M. A precise definition of spin structure on manifold was possible only after the notion of fiber bundle had been introduced; André Haefliger (1956) found the topological obstruction to the existence of a spin structure on an orientable Riemannian manifold and Max Karoubi (1968) extended this result to the non-orientable pseudo-Riemannian case.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
PHYS-757: Axiomatic Quantum Field Theory
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...). Proofs of
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Show more