Optical computing or photonic computing uses light waves produced by lasers or incoherent sources for data processing, data storage or data communication for computing. For decades, photons have shown promise to enable a higher bandwidth than the electrons used in conventional computers (see optical fibers).
Most research projects focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. This approach appears to offer the best short-term prospects for commercial optical computing, since optical components could be integrated into traditional computers to produce an optical-electronic hybrid. However, optoelectronic devices consume 30% of their energy converting electronic energy into photons and back; this conversion also slows the transmission of messages. All-optical computers eliminate the need for optical-electrical-optical (OEO) conversions, thus reducing electrical power consumption.
Application-specific devices, such as synthetic-aperture radar (SAR) and optical correlators, have been designed to use the principles of optical computing. Correlators can be used, for example, to detect and track objects, and to classify serial time-domain optical data.
The fundamental building block of modern electronic computers is the transistor. To replace electronic components with optical ones, an equivalent optical transistor is required. This is achieved by crystal optics (using materials with a non-linear refractive index). In particular, materials exist where the intensity of incoming light affects the intensity of the light transmitted through the material in a similar manner to the current response of a bipolar transistor. Such an optical transistor can be used to create optical logic gates, which in turn are assembled into the higher level components of the computer's central processing unit (CPU). These will be nonlinear optical crystals used to manipulate light beams into controlling other light beams.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Series of lectures covering the physics of quantum heterostructures (including quantum dots), microcavities and photonic crystal cavities as well as the properties of the main light emitting devices t
In this course we will start with a brief history of optical computing, describe methods for implementing optical interconnection and logic and then spend most of our time on learning about the recent
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts.Remark: at least 5 students should be enrolled for the course to be g
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation.
Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light.
A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices (crystal structure) of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.
The optical domain presents potential avenues for enhancing both computing and communication due to its inherentproperties of bandwidth, parallelism, and energy efficiency. This research focuses on harnessing 3-Dimensional (3D)diffractive optics for novel ...
EPFL2024
, , ,
Nonlinear epsilon-near-zero (ENZ) nanodevices featuring vanishing permittivity and CMOS-compatibility are attractive solutions for large-scale-integrated systems-on-chips. Such confined systems with unavoidable heat generation impose critical challenges fo ...
Berlin2024
This talk will highlight opportunities for terahertz science and technology from nonlinear integrated photonic circuits by exploring waveguides, resonators and terahertz antennas. Their present and future applications in metrology, emission and waveform co ...