Nonlinear epsilon-near-zero (ENZ) nanodevices featuring vanishing permittivity and CMOS-compatibility are attractive solutions for large-scale-integrated systems-on-chips. Such confined systems with unavoidable heat generation impose critical challenges for semiconductor-based ENZ performances. While their optical properties are temperature-sensitive, there is no systematic analysis on such crucial dependence. Here, we experimentally report the linear and nonlinear thermo-optic ENZ effects in indium tin oxide. We characterize its temperature-dependent optical properties with ENZ frequencies covering the telecommunication O-band, C-band, and 2-mu m-band. Depending on the ENZ frequency, it exhibits an unprecedented 70-93-THz-broadband 660-955% enhancement over the conventional thermo-optic effect. The ENZ-induced fast-varying large group velocity dispersion up to 0.03-0.18 fs2nm-1 and its temperature dependence are also observed for the first time. Remarkably, the thermo-optic nonlinearity demonstrates a 1113-2866% enhancement, on par with its reported ENZ-enhanced Kerr nonlinearity. Our work provides references for packaged ENZ-enabled photonic integrated circuit designs, as well as a new platform for nonlinear photonic applications and emulations.|Nonlinear epsilon-near-zero nanodevices are attractive solutions for large-scale integrated system-on-chips yet heat genearation upon operation affects their performance. Here, the authors studied the linear and nonlinear thermo-optic effects in the indium tin oxide, commonly used material for this system.
Kirsten Emilie Moselund, Chang Won Lee
Tobias Kippenberg, Rui Ning Wang, Xinru Ji, Zheru Qiu, Andrea Bancora, Yang Liu, Andrey Voloshin