Summary
In the mathematical fields of differential geometry and geometric analysis, the Ricci flow (ˈriːtʃi , ˈrittʃi), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation. The Ricci flow, so named for the presence of the Ricci tensor in its definition, was introduced by Richard Hamilton, who used it through the 1980s to prove striking new results in Riemannian geometry. Later extensions of Hamilton's methods by various authors resulted in new applications to geometry, including the resolution of the differentiable sphere conjecture by Simon Brendle and Richard Schoen. Following Shing-Tung Yau's suggestion that the singularities of solutions of the Ricci flow could identify the topological data predicted by William Thurston's geometrization conjecture, Hamilton produced a number of results in the 1990s which were directed towards the conjecture's resolution. In 2002 and 2003, Grigori Perelman presented a number of fundamental new results about the Ricci flow, including a novel variant of some technical aspects of Hamilton's program. Hamilton and Perelman's works are now widely regarded as forming a proof of the Thurston conjecture, including as a special case the Poincaré conjecture, which had been a well-known open problem in the field of geometric topology since 1904. Their results are considered as a milestone in the fields of geometry and topology. On a smooth manifold M, a smooth Riemannian metric g automatically determines the Ricci tensor Ricg. For each element p of M, by definition gp is a positive-definite inner product on the tangent space TpM at p. If given a one-parameter family of Riemannian metrics gt, one may then consider the derivative ∂/∂t gt, which then assigns to each particular value of t and p a symmetric bilinear form on TpM.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.