Southern blot is a method used for detection and quantification of a specific DNA sequence in DNA samples. This method is used in molecular biology. Briefly, purified DNA from a biological sample (such as blood or tissue) is digested with restriction enzymes, and the resulting DNA fragments are separated by using an electric current to move them through a sieve-like gel or matrix, which allows smaller fragments to move faster than larger fragments. The DNA fragments are transferred out of the gel or matrix onto a solid membrane, which is then exposed to a DNA probe labeled with a radioactive, fluorescent, or chemical tag. The tag allows any DNA fragments containing complementary sequences with the DNA probe sequence to be visualized within the Southern blot. The Southern blotting combines the transfer of electrophoresis-separated DNA fragments to a filter membrane in a process called blotting, and the subsequent fragment detection by probe hybridization. The method is named after the British biologist Edwin Southern, who first published it in 1975. Other blotting methods (i.e., western blot, northern blot, eastern blot, southwestern blot) that employ similar principles, but using RNA or protein, have later been named for compass directions as a sort of pun from Southern's name. As the label is eponymous, Southern is capitalized, as is conventional of proper nouns. The names for other blotting methods may follow this convention, by analogy. Southern invented Southern blot after combining three innovations, the first one is the restriction endonucleases which were developed at Johns Hopkins University by Tom Kelly and Hamilton Smith, those restriction endonucleases are used to cut the DNA at a specific sequence. Kenneth and Noreen Murray introduced this technique as Southern. The second innovation is the gel electrophoresis that based on separation of mixtures of DNA, RNA, or proteins according to molecular size, which was also developed at Johns Hopkins University by Daniel Nathans and Kathleen Danna in 1971.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
BIO-204: Integrated labo in Life sciences II
Au cours de deux semestres, vous utilisez la biologie moléculaire, la biologie cellulaire ainsi que la biochimie pour cloner un ADNc dans un plasmide d'expression, afin de produire, purifier et caract
BIO-695: Image Processing for Life Science
Registration details will be announced via email. It takes place yearly from Sept./October to December & intends to teach image processing with a strong emphasis of applications in life sciences. The
MICRO-614: Electrochemical nano-bio-sensing and bio/CMOS interfaces
Main aim of the course is to introduce, in designing of modern wearable and implantable devices, the new concept of co-design three system' layers: Bio for Specificity, Nano for Sensitivity, and CMOS
Show more
Related lectures (16)
Electrophoresis: Amino Acids and Protein Analysis
Explores amino acids, protein analysis, pH gradient setup, and electroblotting techniques for DNA and proteins.
Genetic Mechanisms: Prader Willi Syndrome
Explores the genetic mechanisms of Prader Willi syndrome and DNA analysis techniques.
Genomics: Introduction and Regulatory Networks
Introduces genomics, covers sequencing technologies, genome variation, and explores human genetic linkage maps and RFLP methods.
Show more
Related publications (92)

Urtica dioica Leaf Infusion Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to Cisplatin Treatment

Rita Sarkis, Maria Younes

Urtica dioica (UD) has been widely used in traditional medicine due to its therapeutic benefits, including its anticancer effects. Natural compounds have a promising potential when used in combination with chemotherapeutic drugs. The present study explores ...
MDPI2023

Living Photovoltaics based on Recombinant Expression of MtrA Decaheme in Photosynthetic Bacteria

Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Alessandra Antonucci, Nils Schürgers, Sara Politi

At the center of microbial bioelectricity applications lies the critical need to express foreign heme proteins that are capable of redirecting the electron flux of the cell’s metabolism. This study presents bioengineered Synechocystis sp. PCC 6803 cells ca ...
2023

Achieving high hybridization density at DNA biosensor surfaces using branched spacer and click chemistry

Sandrine Gerber, Mounir Driss Mensi, Perrine Agnes Edith Robin, Alireza Kavand, Lucas Mayoraz

The COVID-19 pandemic has highlighted the necessity to develop fast, highly sensitive and selective virus detection methods. Surface-based DNA-biosensors are interesting candidates for this purpose. Functionalization of solid substrates with DNA must be pr ...
2023
Show more
Related concepts (14)
Western blot
The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detecting the proteins, this technique is also utilized to visualize, distinguish, and quantify the different proteins in a complicated protein combination.
Northern blot
The northern blot, or RNA blot, is a technique used in molecular biology research to study gene expression by detection of RNA (or isolated mRNA) in a sample. With northern blotting it is possible to observe cellular control over structure and function by determining the particular gene expression rates during differentiation and morphogenesis, as well as in abnormal or diseased conditions. Northern blotting involves the use of electrophoresis to separate RNA samples by size, and detection with a hybridization probe complementary to part of or the entire target sequence.
Molecular cloning
Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.