SPARQLSPARQL (pronounced "sparkle" ˈspɑːkəl, a recursive acronym for SPARQL Protocol and RDF Query Language) is an RDF query language—that is, a semantic query language for databases—able to retrieve and manipulate data stored in Resource Description Framework (RDF) format. It was made a standard by the RDF Data Access Working Group (DAWG) of the World Wide Web Consortium, and is recognized as one of the key technologies of the semantic web. On 15 January 2008, SPARQL 1.0 was acknowledged by W3C as an official recommendation, and SPARQL 1.
Schema.orgSchema.org is a reference website that publishes documentation and guidelines for using structured data mark-up on web-pages (called microdata). Its main objective is to standardize HTML tags to be used by webmasters for creating rich results (displayed as visual data or infographic tables on search engine results) about a certain topic of interest. It is a part of the semantic web project, which aims to make document mark-up codes more readable and meaningful to both humans and machines. Schema.
Semantic integrationSemantic integration is the process of interrelating information from diverse sources, for example calendars and to do lists, email archives, presence information (physical, psychological, and social), documents of all sorts, contacts (including social graphs), search results, and advertising and marketing relevance derived from them. In this regard, semantics focuses on the organization of and action upon information by acting as an intermediary between heterogeneous data sources, which may conflict not only by structure but also context or value.
Description logicDescription logics (DL) are a family of formal knowledge representation languages. Many DLs are more expressive than propositional logic but less expressive than first-order logic. In contrast to the latter, the core reasoning problems for DLs are (usually) decidable, and efficient decision procedures have been designed and implemented for these problems. There are general, spatial, temporal, spatiotemporal, and fuzzy description logics, and each description logic features a different balance between expressive power and reasoning complexity by supporting different sets of mathematical constructors.
Machine-readable medium and dataIn communications and computing, a machine-readable medium (or computer-readable medium) is a medium capable of storing data in a format easily readable by a digital computer or a sensor. It contrasts with human-readable medium and data. The result is called machine-readable data or computer-readable data, and the data itself can be described as having machine-readability. Machine-readable data must be structured data. Attempts to create machine-readable data occurred as early as the 1960s.
Semantic tripleA semantic triple, or RDF triple or simply triple, is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject–predicate–object expressions (e.g., "Bob is 35", or "Bob knows John"). This format enables knowledge to be represented in a machine-readable way. Particularly, every part of an RDF triple is individually addressable via unique URIs — for example, the statement "Bob knows John" might be represented in RDF as: http://example. Controlled vocabularyControlled vocabularies provide a way to organize knowledge for subsequent retrieval. They are used in subject indexing schemes, subject headings, thesauri, taxonomies and other knowledge organization systems. Controlled vocabulary schemes mandate the use of predefined, preferred terms that have been preselected by the designers of the schemes, in contrast to natural language vocabularies, which have no such restriction.
Knowledge engineeringKnowledge engineering (KE) refers to all technical, scientific and social aspects involved in building, maintaining and using knowledge-based systems. One of the first examples of an expert system was MYCIN, an application to perform medical diagnosis. In the MYCIN example, the domain experts were medical doctors and the knowledge represented was their expertise in diagnosis. Expert systems were first developed in artificial intelligence laboratories as an attempt to understand complex human decision making.
Enterprise bookmarkingEnterprise bookmarking is a method for Web 2.0 users to tag, organize, store, and search bookmarks of both web pages on the Internet and data resources stored in a distributed database or . This is done collectively and collaboratively in a process by which users add tag (metadata) and knowledge tags. In early versions of the software, these tags are applied as non-hierarchical keywords, or terms assigned by a user to a web page, and are collected in tag clouds. Examples of this software are Connectbeam and Dogear.
Semantic heterogeneitySemantic heterogeneity is when database schema or datasets for the same domain are developed by independent parties, resulting in differences in meaning and interpretation of data values. Beyond structured data, the problem of semantic heterogeneity is compounded due to the flexibility of semi-structured data and various tagging methods applied to documents or unstructured data. Semantic heterogeneity is one of the more important sources of differences in heterogeneous datasets.