Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.
Luc ThévenazLuc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases. His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach. In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering. He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing). He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Peter RyserDr. Peter Ryser is a Professor Emeritus at the Swiss Federal Institute of Technology in Lausanne. He has over three decades of research and teaching experience from various corporate and academic institutions. He was previously a Director at Siemens Building Technologies where he was responsible for R&D, product innovation and patents. Dr. Ryser has a Ph.D. in applied Physics from the University of Geneva, a Masters degree in Experimental Physics and an MBA.
Klaus KernKlaus Kern is Professor of Physics at EPFL and Director and Scientific Member at the Max-Planck-Institute for Solid State Research in Stuttgart, Germany. He also is Honorary Professor at the University of Konstanz, Germany. His present research interests are in nanoscale science, quantum technology and in microscopy at the atomic limits of space and time. He holds a chemistry degree and PhD from the University of Bonn and a honorary doctors degree from the University of Aalborg. After his doctoral studies he was staff scientist at the Research Center Jülich and visiting scientist at Bell Laboratories, Murray Hill before joining the Faculty of EPFL in 1991 and the Max-Planck-Society in 1998. Professor Kern has authored and coauthored close to 700 scientific publications, which have received nearly 60‘000 citations. He has served frequently on advisory committees to universities, professional societies and institutions and has received numerous scientific awards and honors, including the 2008 Gottfried-Wilhelm-Leibniz Prize and the 2016 Van‘t Hoff Prize. Prof. Kern has also educated a large number of leading scientists in nanoscale physics and chemistry. During the past twenty-five years he has supervised one hundred PhD students and sixty postdoctoral fellows. Today, more than fifty of his former students and postdocs hold prominent faculty positions at Universities around the world.
Jan Van HerleBorn in Antwerp, Belgium. In Switzerland since 1983. Became Swiss citizen in 2004 out of conviction of principles of democracy and bottom-up participation. No double nationality. Village Council Member for 2 five-year mandates in 2006-2016.
1987 : Chemist from Basel University (CH).
1988 : Post-graduate IT diploma from Basel Engineering School.
1989 : Industry internship ABB Baden (CH).
1990-1993 : PhD Thesis EPFL, on Solid Oxide Fuel Cell cathode reaction mechanisms.
1994-1995 : Japanese Postdoctoral Fellowship in Tsukuba, Japan, on ceramic powders.
1995-2000 : Researcher at EPFL, Dpt. Chemistry : project responsible in PPM2 (materials), FP4-BriteEuram, NEDO (Japan), Swiss Gas Union (CH, oxygen membranes).
1998-2000 : Masters in Energy Technology, EPFL.
2000 : Cofounder of HTceramix SA (EPFL spin-off), now based in Yverdon (14 employees). Taken over by SOLIDpower in 2007, now 250 employees with 70 MCHF raised.
2000 : 1st Assistant and lecturer at LENI (STI-IGM) : fuel cell group responsible, projects on biogas (Federal Energy Office), woodgas (CCEM), fuel cell stacking (CTI, FP6, FNS), ceramic separation membranes (COST, FNS), microtubes (STI Seed), stability/lifetime/reliability in fuel cells (Electricité de France, swisselectric research). Currently 4 Ph D theses ongoing, 14 theses concluded, of which 5 colateral with SB and IMX. M.E.R. since Nov 2008.
Total funding raised so far >18 MCHF (50% as main applicant; 30% outside CH; 20% industry).
Scientific output : >135 peer-reviewed publications, >120 conference papers, 40 invited presentations (8 keynotes), >70 granted proposals.
Fluent in 5 languages (Dutch, French, German ( Swiss-german), English, Spanish).
Dragan DamjanovicDragan Damjanovic received BSc diploma in Physics from the Faculty of Natural Sciences and Mathematics, University of Sarajevo, in 1980, and PhD in Ceramics Science from the Department of Materials Science and Engineering, College of Earth and Mineral Sciences, the Pennsylvania State University (PSU) in 1987. From 1988 to 1991 he was a research associate in the Materials Research Laboratory at the PSU. He joined the Ceramics Laboratory, Department of Materials Science and Engineering, Ecole polytechnique fédérale de Lausanne in 1991. He is currently a "professeur titulaire", heads the Group for Ferroelectrics and Functional Oxides at the Institute of Materials and teaches undergraduate and graduate courses on structure and electrical properties of materials. The research activities include fundamental and applied investigations of piezoelectric, ferroelectric and dielectric properties of a broad class of materials.
Philippe GilletPhilippe GILLET completed his undergraduate studies in Earth Science at Ecole normale supérieure de la rue dUlm (Paris). In 1983 he obtained a PhD in Geophysics at Université de Paris VII and joined Université de Rennes I as an assistant. Having obtained a State Doctorate in 1988, he became a Professor at this same university, which he left in 1992 to join Ecole normale supérieure de Lyon.
The first part of his research career was devoted to the formation of mountain ranges particularly of the Alps. In parallel, he developed experimental techniques (diamond anvil cells) to recreate the pressure and temperature prevailing deep inside planets in the lab. These experiments aim at understanding what materials make up the unreachable depths of planets in the solar system.
In 1997, Gillet started investigating extraterrestrial matter. He was involved in describing meteorites coming from Mars, the moon or planets which have disappeared today and explaining how these were expelled from their original plant by enormous shocks which propelled them to Earth. He also participated in the NASA Stardust program and contributed to identify comet grains collected from the tail of Comet Wild 2 and brought back to Earth. These grains represent the initial minerals in our solar system and were formed over 4.5 billion years ago. He has also worked on the following subjects:
Interactions between bacteria and minerals.
Solid to glass transition under pressure.
Experimental techniques: laser-heated diamond anvil cell, Raman spectroscopy, X-ray diffraction with synchrotron facilities, electron microscopy.
Philippe Gillet is also active in science and education management. He was the Director of the CNRS Institut National des Sciences de lUnivers (France), the President of the French synchrotron facility SOLEIL and of the French National Research Agency (2007), and the Director of Ecole normale supérieure de Lyon. Before joining EPFL he was the Chief of Staff of the French Minister of Higher Education and Research.
Selected publications:
Ferroir, T., L. Dubrovinsky, A. El Goresy, A. Simionovici, T. Nakamura, and P. Gillet (2010), Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases, Earth and Planetary Science Letters, 290(1-2), 150-154.
Barrat J.A., Bohn M., Gillet Ph., Yamaguchi A. (2009) Evidence for K-rich terranes on Vesta from impact spherules. Meteoritics & Planetary Science, 44, 359374.
Brownlee D, Tsou P, Aleon J, et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711-1716.
Beck P., Gillet Ph., El Goresy A., and Mostefaoui S. (2005) Timescales of shock processes in chondrites and Martian meteorites. Nature 435, 1071-1074.
Blase X., Gillet Ph., San Miguel A. and Mélinon P. (2004) Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505-215509.
Gillet Ph. (2002) Application of vibrational spectroscopy to geology. In Handbook of vibrational spectroscopy, Vol. 4 (ed. J. M. Chalmers and P. R. Griffiths), pp. 1-23. John Wiley & Sons.
Gillet Ph., Chen C., Dubrovinsky L., and El Goresy A. (2000) Natural NaAlSi3O8 -hollandite in the shocked Sixiangkou meteorite. Science 287, 1633-1636.
Harald BruneOriginaire de Münich en Allemagne, né en 1961, Harald Brune obtient son diplôme en physique de l'Université Ludwig Maximilians en 1989. Après une thèse en chimie physique à l'Institut Fritz-Haber de la Société Max-Planck à Berlin il obtient son titre de docteur ès sciences en 1992. Dès cela, il rejoint le groupe du Prof. K. Kern à l'Institut de physique expérimentale à l'EPFL. En 1995 il est chercheur invité à Copenhague travaillant en modélisation chez le Prof. J. Nørskov. De retour à l'EPFL, il se voit décerné le prix Latsis EPFL 1996 pour ses études par microscopie à effet tunnel de processus atomiques déterminants la croissance cristalline de couches minces. En 1998 il obtient son habilitation (venia legendi) en Physique et est nommé Maître d'enseignement et de recherche (MER) en nanophysique à l'EPFL. La même année il recoit une offre de Professeur Ordinaire (C4) de l'Université Philipps de Marburg. Début 1999 il réfuse cette offre et accepte un poste de Professeur Extraordinaire à l'EPFL et s'installe au sein de l'Institut de la Physique des Nanostructures. Il est nommé Professeur Ordinaire en 2005. Sa recherche porte sur les propriétés physiques (en particulier le magnétisme et la structure électronique) de nouvelles formes de la matière condensée comme des nanostructures et des couches ultra-minces. Il s'intéresse également à la catalyse hétérogène sur des systèmes inspirés dans leur composition et taille par celle des sites actives dans les enzymes en biologie. Il enseigne la Physique Générale pour ingénieurs, la Physique des matériaux solides pour physiciens, les méthodes expérimentales pour physiciens, ainsi que la Physique des surfaces, interfaces et nanostrcutures à l'école doctorale.
Farzan JazaeriFarzan Jazaeri received his M.Sc. degree in 2009 from University of Tehran and his Ph.D. in electronic engineering from EPFL in 2015. He has been serving as Research Scientist at EPFL since 2015 and Senior RD Semiconductor Device Engineer in the Swatch Company since 2019.He is a recipient of the 2018 Electron Devices Society George E. Smith Award, the best talk award from MIXDES 2019 and the best paper awards from ESSDERC2018 and ESSDERC2019, and several other academic awards. He is also awarded an advanced Swiss National Science Foundation grant for two years fellowship in MIT and NASA. His doctoral thesis was recognized to be eligible for the IBM award in 2017. Dr. Jazaeri is currently research scientist and project leader in high level of international scientific collaborative activities at EPFL. His research activities on solid-state physics are focused on creation of the cryogenic temperature infrastructure necessary to operate the qubits for quantum computations(MOSQUITO), radiation-induced damages in advanced devices for the future high energy physics experiments at CERN (GigaRadMOST), Pinned Photodiodes for CIS, and modeling and characterization AlGaN-GaN heterostructure in collaboration with IMEC. Together with Dr. Sallese, he is the lead developer of EPFL HEMT MODEL for GaN HEMTs. He fully developed a new model (EPFL-JL Model) for the so-called nanowire FETs and was invited by Cambridge University Press to write a book on junctionless nanowire FETs, emerging nanoelectronic devices, already published since 2018. He serves as lead editor and reviewer for several scientific journals. He has been an invited keynote speaker at several international conferences and events. He is invited to MIXDES 2019 as a keynote speaker to address quantum bits and quantum computing architecture.From Jun 2009 to February 2010, he worked on designing and implementing SD/HD broadcast systems with SAMIM-RAYANEH Co., Tehran, Iran. Between March 2010 and November 2011 he worked as a SCADA expert in Tehran Regional Electric Co. (TREC), Tehran, Iran. From September 2010 to December 2011, he continued his research activities in nano-electronics in Tehran, Iran. In December 2011, he joined to Electron Device Modelling and Technology Lab (EDLab) and pursued his Ph.D. degree at EPFL. In 2015, he received his Ph.D. from Microsystems and Microelectronics department, Integrated Systems Laboratory (STI/IC) at EPFL, Lausanne, Switzerland.