Principal branchIn mathematics, a principal branch is a function which selects one branch ("slice") of a multi-valued function. Most often, this applies to functions defined on the complex plane. Principal branches are used in the definition of many inverse trigonometric functions, such as the selection either to define that or that A more familiar principal branch function, limited to real numbers, is that of a positive real number raised to the power of 1/2. For example, take the relation y = x1/2, where x is any positive real number.
Difference of two squaresIn mathematics, the difference of two squares is a squared (multiplied by itself) number subtracted from another squared number. Every difference of squares may be factored according to the identity in elementary algebra. The proof of the factorization identity is straightforward. Starting from the left-hand side, apply the distributive law to get By the commutative law, the middle two terms cancel: leaving The resulting identity is one of the most commonly used in mathematics.
Nested radicalIn algebra, a nested radical is a radical expression (one containing a square root sign, cube root sign, etc.) that contains (nests) another radical expression. Examples include which arises in discussing the regular pentagon, and more complicated ones such as Some nested radicals can be rewritten in a form that is not nested. For example, Another simple example, Rewriting a nested radical in this way is called denesting. This is not always possible, and, even when possible, it is often difficult.
Shifting nth root algorithmThe shifting nth root algorithm is an algorithm for extracting the nth root of a positive real number which proceeds iteratively by shifting in n digits of the radicand, starting with the most significant, and produces one digit of the root on each iteration, in a manner similar to long division. Let be the base of the number system you are using, and be the degree of the root to be extracted. Let be the radicand processed thus far, be the root extracted thus far, and be the remainder.
AM-GM InequalityIn mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same (in which case they are both that number). The simplest non-trivial case – i.e., with more than one variable – for two non-negative numbers x and y, is the statement that with equality if and only if x = y.
Rhind Mathematical PapyrusThe Rhind Mathematical Papyrus (RMP; also designated as papyrus British Museum 10057 and pBM 10058) is one of the best known examples of ancient Egyptian mathematics. It is named after Alexander Henry Rhind, a Scottish antiquarian, who purchased the papyrus in 1858 in Luxor, Egypt; it was apparently found during illegal excavations in or near the Ramesseum. It dates to around 1550 BC. The British Museum, where the majority of the papyrus is now kept, acquired it in 1865 along with the Egyptian Mathematical Leather Roll, also owned by Henry Rhind.
HeptadecagonIn geometry, a heptadecagon, septadecagon or 17-gon is a seventeen-sided polygon. A regular heptadecagon is represented by the Schläfli symbol {17}. As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. This proof represented the first progress in regular polygon construction in over 2000 years.
HippasusHippasus of Metapontum (ˈhɪpəsəs; Ἵππασος ὁ Μεταποντῖνος, Híppasos; c. 530 – c. 450 BC) was a Greek philosopher and early follower of Pythagoras. Little is known about his life or his beliefs, but he is sometimes credited with the discovery of the existence of irrational numbers. The discovery of irrational numbers is said to have been shocking to the Pythagoreans, and Hippasus is supposed to have drowned at sea, apparently as a punishment from the gods for divulging this.
Lagrange's four-square theoremLagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares. That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows: This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.