In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A.
Some authors use the name square root or the notation A1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = BTB = A (for real-valued matrices, where BT is the transpose of B).
Less frequently, the name square root may be used for any factorization of a positive semidefinite matrix A as BTB = A, as in the Cholesky factorization, even if BB ≠ A. This distinct meaning is discussed in .
In general, a matrix can have several square roots. In particular, if then as well.
The 2×2 identity matrix has infinitely many square roots. They are given by
and
where are any numbers (real or complex) such that .
In particular if is any Pythagorean triple—that is, any set of positive integers such that , then
is a square root matrix of which is symmetric and has rational entries.
Thus
Minus identity has a square root, for example:
which can be used to represent the imaginary unit i and hence all complex numbers using 2×2 real matrices, see Matrix representation of complex numbers.
Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root with complex-valued entries.
Some matrices have no square root. An example is the matrix
While the square root of a nonnegative integer is either again an integer or an irrational number, in contrast an integer matrix can have a square root whose entries are rational, yet non-integral, as in examples above.
Positive definite matrix#Decomposition
A symmetric real n × n matrix is called positive semidefinite if for all (here denotes the transpose, changing a column vector x into a row vector).
A square real matrix is positive semidefinite if and only if for some matrix B.
There can be many different such matrices B.
A positive semidefinite matrix A can also have many matrices B such that .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced ʃəˈlɛski ) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices, and posthumously published in 1924. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.
In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators.
Materials for high -temperature environments are actively being investigated for deployment in aerospace and nuclear applications. This study uses computational approaches to unravel the crystallography and thermodynamics of a promising class of refractory ...
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
Siam Publications2024
, , , , ,
Negative triangularity (NT) scenarios in TCV have been compared to positive triangularity (PT) scenarios using the same plasma shapes foreseen for divertor tokamak test tokamak operations. The experiments provided a NT/PT L-mode pair and a PT H-mode with d ...