Cupola (geometry)In geometry, a cupola is a solid formed by joining two polygons, one (the base) with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.
Snub trihexagonal tilingIn geometry, the snub hexagonal tiling (or snub trihexagonal tiling) is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol sr{3,6}. The snub tetrahexagonal tiling is a related hyperbolic tiling with Schläfli symbol sr{4,6}. Conway calls it a snub hextille, constructed as a snub operation applied to a hexagonal tiling (hextille). There are three regular and eight semiregular tilings in the plane. This is the only one which does not have a reflection as a symmetry.
Square cupolaIn geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids (J_4). It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon. The following formulae for the circumradius, surface area, volume, and height can be used if all faces are regular, with edge length a: The dual of the square cupola has 8 triangular and 4 kite faces: The crossed square cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex square cupola.
Elongated triangular tilingIn geometry, the elongated triangular tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. It is named as a triangular tiling elongated by rows of squares, and given Schläfli symbol {3,6}:e. Conway calls it a isosnub quadrille. There are 3 regular and 8 semiregular tilings in the plane. This tiling is similar to the snub square tiling which also has 3 triangles and two squares on a vertex, but in a different order.
Regular skew polyhedronIn geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces. Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra. According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to regular skew polyhedra.
Snub square tilingIn geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is s{4,4}. Conway calls it a snub quadrille, constructed by a snub operation applied to a square tiling (quadrille). There are 3 regular and 8 semiregular tilings in the plane. There are two distinct uniform colorings of a snub square tiling. (Naming the colors by indices around a vertex (3.3.4.3.4): 11212, 11213.
Triangular cupolaIn geometry, the triangular cupola is one of the Johnson solids (J_3). It can be seen as half a cuboctahedron. The following formulae for the volume (), the surface area () and the height () can be used if all faces are regular, with edge length a: The dual of the triangular cupola has 6 triangular and 3 kite faces: The triangular cupola can be augmented by 3 square pyramids, leaving adjacent coplanar faces. This isn't a Johnson solid because of its coplanar faces.
DisphenoidIn geometry, a disphenoid () is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron. All the solid angles and vertex figures of a disphenoid are the same, and the sum of the face angles at each vertex is equal to two right angles.