In mathematics, equivariant cohomology (or Borel cohomology) is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient : If is the trivial group, this is the ordinary cohomology ring of , whereas if is contractible, it reduces to the cohomology ring of the classifying space (that is, the group cohomology of when G is finite.) If G acts freely on X, then the canonical map is a homotopy equivalence and so one gets: It is also possible to define the equivariant cohomology of with coefficients in a module A; these are abelian groups. This construction is the analogue of cohomology with local coefficients. If X is a manifold, G a compact Lie group and is the field of real numbers or the field of complex numbers (the most typical situation), then the above cohomology may be computed using the so-called Cartan model (see equivariant differential forms.) The construction should not be confused with other cohomology theories, such as Bredon cohomology or the cohomology of invariant differential forms: if G is a compact Lie group, then, by the averaging argument, any form may be made invariant; thus, cohomology of invariant differential forms does not yield new information. Koszul duality is known to hold between equivariant cohomology and ordinary cohomology. For a Lie groupoid equivariant cohomology of a smooth manifold is a special example of the groupoid cohomology of a Lie groupoid. This is because given a -space for a compact Lie group , there is an associated groupoidwhose equivariant cohomology groups can be computed using the Cartan complex which is the totalization of the de-Rham double complex of the groupoid. The terms in the Cartan complex arewhere is the symmetric algebra of the dual Lie algebra from the Lie group , and corresponds to the -invariant forms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.