Coordinate timeIn the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spatial coordinates. The time specified by the time coordinate is referred to as coordinate time to distinguish it from proper time.
Mass in special relativityThe word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy).
SpacetimeIn physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe).
Speed of lightThe speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to ). According to the special theory of relativity, c is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying information) can travel through space. All forms of electromagnetic radiation, including visible light, travel at the speed of light. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and very sensitive measurements, their finite speed has noticeable effects.
Tests of general relativityTests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954.
Schwarzschild metricIn Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun.
Gravitational redshiftIn physics and general relativity, gravitational redshift (known as Einstein shift in older literature) is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well (seem to) lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a redshift. The opposite effect, in which photons (seem to) gain energy when travelling into a gravitational well, is known as a gravitational blueshift (a type of blueshift).
Relative velocityThe relative velocity (also or ) is the velocity of an object or observer B in the rest frame of another object or observer A. We begin with relative motion in the classical, (or non-relativistic, or the Newtonian approximation) that all speeds are much less than the speed of light. This limit is associated with the Galilean transformation. The figure shows a man on top of a train, at the back edge. At 1:00 pm he begins to walk forward at a walking speed of 10 km/h (kilometers per hour). The train is moving at 40 km/h.
Observer (special relativity)In special relativity, an observer is a frame of reference from which a set of objects or events are being measured. Usually this is an inertial reference frame or "inertial observer". Less often an observer may be an arbitrary non-inertial reference frame such as a Rindler frame which may be called an "accelerating observer". The special relativity usage differs significantly from the ordinary English meaning of "observer".
Tests of relativistic energy and momentumTests of relativistic energy and momentum are aimed at measuring the relativistic expressions for energy, momentum, and mass. According to special relativity, the properties of particles moving approximately at the speed of light significantly deviate from the predictions of Newtonian mechanics. For instance, the speed of light cannot be reached by massive particles. Today, those relativistic expressions for particles close to the speed of light are routinely confirmed in undergraduate laboratories, and necessary in the design and theoretical evaluation of collision experiments in particle accelerators.