Category of modulesIn algebra, given a ring R, the category of left modules over R is the whose are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the . The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring R but that category is equivalent to the category of left (or right) modules over the enveloping algebra of R (or over the opposite of that).
Grothendieck groupIn mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in , introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory.
BimoduleIn abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.
Flat moduleIn algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper Géometrie Algébrique et Géométrie Analytique.
Tor functorIn mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures. The homology of groups, Lie algebras, and associative algebras can all be defined in terms of Tor. The name comes from a relation between the first Tor group Tor1 and the torsion subgroup of an abelian group.
Tensor product of fieldsIn mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.
Hom functorIn mathematics, specifically in , hom-sets (i.e. sets of morphisms between ) give rise to important functors to the . These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Let C be a (i.e. a for which hom-classes are actually sets and not proper classes). For all objects A and B in C we define two functors to the as follows: {| class=wikitable |- ! Hom(A, –) : C → Set ! Hom(–, B) : C → Set |- | This is a covariant functor given by: Hom(A, –) maps each object X in C to the set of morphisms, Hom(A, X) Hom(A, –) maps each morphism f : X → Y to the function Hom(A, f) : Hom(A, X) → Hom(A, Y) given by for each g in Hom(A, X).
Monoidal categoryIn mathematics, a monoidal category (or tensor category) is a equipped with a bifunctor that is associative up to a natural isomorphism, and an I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant s commute. The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Tensor-hom adjunctionIn mathematics, the tensor-hom adjunction is that the tensor product and hom-functor form an adjoint pair: This is made more precise below. The order of terms in the phrase "tensor-hom adjunction" reflects their relationship: tensor is the left adjoint, while hom is the right adjoint. Say R and S are (possibly noncommutative) rings, and consider the right module categories (an analogous statement holds for left modules): Fix an -bimodule and define functors and as follows: Then is left adjoint to .