**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# De Sitter space

Summary

In mathematical physics, n-dimensional de Sitter space (often abbreviated to dSn) is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere (with its canonical Riemannian metric).
The main application of de Sitter space is its use in general relativity, where it serves as one of the simplest mathematical models of the universe consistent with the observed accelerating expansion of the universe. More specifically, de Sitter space is the maximally symmetric vacuum solution of Einstein's field equations with a positive cosmological constant \Lambda (corresponding to a positive vacuum energy density and negative pressure).
de Sitter space and anti-de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked closely together in Leiden in the

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people

No results

Related lectures (2)

Related courses (2)

Related publications (1)

PHYS-739: Conformal Field theory and Gravity

This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

Loading

Related concepts (15)

Related units

General relativity

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current des

Anti-de Sitter space

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space ar

Inflation (cosmology)

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch is believed to have las

No results

We study constant mean curvature Lorentzian hypersurfaces of R^{1,d+1} from the point of view of its Cauchy problem. We completely classify the spherically symmetric solutions, which include among them a manifold isometric to the de Sitter space of general relativity. We show that the spherically symmetric solutions exhibit one of three (future) asymptotic behaviours: (i) finite time collapse (ii) convergence to a time-like cylinder isometric to some RxS^d and (iii) infinite expansion to the future converging asymptotically to a time translation of the de Sitter solution. For class (iii) we examine the future stability properties of the solutions under arbitrary (not necessarily spherically symmetric) perturbations. We show that the usual notions of asymptotic stability and modulational stability cannot apply, and connect this to the presence of cosmological horizons in these class (iii) solutions. We can nevertheless show the global existence and future stability for small perturbations of class (iii) solutions under a notion of stability that naturally takes into account the presence of cosmological horizons. The proof is based on the vector field method, but requires additional geometric insight. In particular we introduce two new tools: an inverse-Gauss-map gauge to deal with the problem of cosmological horizon and a quasilinear generalisation of Brendle's Bel-Robinson tensor to obtain natural energy quantities.