Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The design of envelopes with complex geometries often leads to construction challenges. To overcome these difficulties, resorting to discrete differential geometry proved successful by establishing close links between mesh properties and the existence of g ...
We formulate a conjecture characterizing smooth projective varieties in positive characteristic whose Frobenius morphism can be lifted modulo p(2)-we expect that such varieties, after a finite stale cover, admit a toric fibration over an ordinary abelian v ...
We prove that there are finitely many families, up to isomorphism in codimension one, of elliptic Calabi-Yau manifolds Y -> X with a rational section, provided that dim(Y)
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
The design of envelopes with complex geometries often leads to construction challenges. To overcome these difficulties, resorting to discrete differential geometry proved successful by establishing close links between mesh properties and the existence of g ...
Numerical continuation in the context of optimization can be used to mitigate convergence issues due to a poor initial guess. In this work, we extend this idea to Riemannian optimization problems, that is, the minimization of a target function on a Riemann ...
A polarized variety is K-stable if, for any test configuration, the Donaldson-Futaki invariant is positive. In this paper, inspired by classical geometric invariant theory, we describe the space of test configurations as a limit of a direct system of Tits ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
In the paper we deal with shells with non-zero Gaussian curvature. We derive sharp Korn's first (linear geometric rigidity estimate) and second inequalities on that kind of shell for zero or periodic Dirichlet, Neumann, and Robin type boundary conditions. ...
We consider radially symmetric, energy critical wave maps from (1 + 2)-dimensional Minkowski space into the unit sphere Sm, m≥1, and prove global regularity and scattering for classical smooth data of finite energy. In addition, we establish a ...