**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Isogeometric Analysis for High Order Geometric Partial Differential Equations with Applications

Abstract

In this thesis, we consider the numerical approximation of high order geometric Partial Differential Equations (PDEs). We first consider high order PDEs defined on surfaces in the 3D space that are represented by single-patch tensor product NURBS. Then, we spatially discretize the PDEs by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method. With this aim, we consider the construction of periodic NURBS function spaces with high degree of global continuity, even on closed surfaces. As benchmark problems for the proposed discretization, we propose Laplace-Beltrami problems of the fourth and sixth orders, as well as the corresponding eigenvalue problems, and we analyze the impact of the continuity of the basis functions on the accuracy as well as on computational costs. The numerical solution of two high order phase field problems on both open and closed surfaces is also considered: the fourth order Cahn-Hilliard equation and the sixth order crystal equation, both discretized in time with the generalized-alpha method. We then consider the numerical approximation of geometric PDEs, derived, in particular, from the minimization of shape energy functionals by L^2-gradient flows. We analyze the mean curvature and the Willmore gradient flows, leading to second and fourth order PDEs, respectively. These nonlinear geometric PDEs are discretized in time with Backward Differentiation Formulas (BDF), with a semi-implicit formulation based on an extrapolation of the geometry, leading to a linear problem to be solved at each time step. Results about the numerical approximation of the two geometric flows on several geometries are analyzed. Then, we study how the proposed mathematical framework can be employed to numerically approximate the equilibrium shapes of lipid bilayer biomembranes, or vesicles, governed by the Canham-Helfrich curvature model. We propose two numerical schemes for enforcing the conservation of the area and volume of the vesicles, and report results on benchmark problems. Then, the approximation of the equilibrium shapes of biomembranes with different values of reduced volume is presented. Finally, we consider the dynamics of a vesicle, e.g. a red blood cell, immersed in a fluid, e.g. the plasma. In particular, we couple the curvature-driven model for the lipid membrane with the incompressible Navier-Stokes equations governing the fluid. We consider a segregated approach, with a formulation based on the Resistive Immersed Surface method applied to NURBS geometries. After analyzing benchmark fluid simulations with immersed NURBS objects, we report numerical results for the investigation of the dynamics of a vesicle under different flow conditions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related publications (2)

Related concepts (13)

Related MOOCs (15)

Loading

Loading

Approximation

An approximation is anything that is intentionally similar but not exactly equal to something else. The word approximation is derived from Latin approximatus, from proximus meaning very near and the prefix ad- (ad- before p becomes ap- by assimilation) meaning to. Words like approximate, approximately and approximation are used especially in technical or scientific contexts. In everyday English, words such as roughly or around are used with a similar meaning. It is often found abbreviated as approx.

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.

Geometry

Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

MATLAB and Octave for Beginners

Learn MATLAB and Octave and start experimenting with matrix manipulations, data visualizations, functions and mathematical computations.

This thesis is devoted to the derivation of a posteriori error estimates for the numerical approximation of fluids flows separated by a free surface. Based on these estimates, error indicators are int

Alfio Quarteroni, Andrea Bartezzaghi

We consider the numerical approximation of lipid biomembranes at equilibrium described by the Canham-Helfrich model, according to which the bending energy is minimized under area and volume constraint