Concept

Fonction trigonométrique

Résumé
thumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques. Les trois fonctions trigonométriques les plus utilisées sont le sinus (noté sin), le cosinus (cos) et la tangente (tan, tang ou tg). Les relations entre les différentes fonctions trigonométriques constituent les identités trigonométriques. En analyse mathématique, ces fonctions peuvent aussi être définies à partir de la somme de séries entières ou comme les solutions d'équations différentielles, ce qui permet de les généraliser à des nombres complexes. Selon les domaines d'application, en navigation maritime ou aérienne notamment, d'autres fonctions sont utilisées : cotangente, sécante, cosécante, sinus verse, haversine, exsécante, etc. Par ailleurs, sur le modèle des fonctions trigonométriques, on définit aussi des fonctions hyperboliques dont le nom dérive des premières : sinus hyperbolique (sinh), cosinus hyperbolique (cosh), tangente hyperbolique (tanh), etc. Histoire des fonctions trigonométriques Les traces les plus anciennes d'utilisation de sinus seraient apparues dans les Śulba-Sūtras écrits en sanskrit védique dans la période des Les fonctions trigonométriques furent plus tard étudiées par Hipparque de Nicée (185-125 av. J.-C.), Âryabhata (476-550), Varahamihira, Brahmagupta, Al-Khawarizmi, Abu l-Wafa, Omar Khayyam, Al-Battani (858-929), Bhāskara II, Nasir ad-Din at-Tusi, Regiomontanus (1464), Al-Kachi (), Ulugh Beg (), Madhava (1400), Rheticus et son disciple Valentin Otho. L'ouvrage Introductio in analysin infinitorum (1748) de Leonhard Euler fut en grande partie à l'origine des considérations analytiques des fonctions trigonométriques en Europe en les définissant à partir de développements en séries, et présenta les formules d'Euler.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.