Summary
Magnonics is an emerging field of modern magnetism, which can be considered a sub-field of modern solid state physics. Magnonics combines the study of waves and magnetism. Its main aim is to investigate the behaviour of spin waves in nano-structure elements. In essence, spin waves are a propagating re-ordering of the magnetisation in a material and arise from the precession of magnetic moments. Magnetic moments arise from the orbital and spin moments of the electron, most often it is this spin moment that contributes to the net magnetic moment. Following the success of the modern hard disk, there is much current interest in future magnetic data storage and using spin waves for things such as 'magnonic' logic and data storage. Similarly, spintronics looks to utilize the inherent spin degree of freedom to complement the already successful charge property of the electron used in contemporary electronics. Modern magnetism is concerned with furthering the understanding of the behaviour of the magnetisation on very small (sub-micrometre) length scales and very fast (sub-nanosecond) timescales and how this can be applied to improving existing or generating new technologies and computing concepts. A magnon torque device was invented and later perfected at the National University of Singapore's Electrical & Computer Engineering department, which is based on such potential uses, with results published on November 29, 2019, in Science. A magnonic crystal is a magnetic metamaterial with alternating magnetic properties. Like conventional metamaterials, their properties arise from geometrical structuring, rather than their bandstructure or composition directly. Small spatial inhomogeneities create an effective macroscopic behaviour, leading to properties not readily found in nature. By alternating parameters such as the relative permeability or saturation magnetisation, there exists the possibility to tailor 'magnonic' bandgaps in the material.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (10)

Active Ferromagnetic Metasurface with Topologically Protected Spin Texture for Spectral Filters

Dirk Grundler, Haiming Yu, Jilei Chen

Electromagnetic metasurfaces modulate a material's response to electromagnetic waves by specifically arranged elements with dimensions below the wavelength. They have opened new fields of research, in
2022

Advances in Magnetics Roadmap on Spin-Wave Computing

Qian Wang, Dirk Grundler, Xiuwei Zhang, Yiming Li

Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonl
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022

Atomic layer deposition of Ni and Ni80Fe20 for tubular spin-wave nanocavities

Maria Carmen Giordano

Magnetic thin films and magnetic nanostructures have become essential components of modern technological applications. Modern branches of magnetisms focus on spin-charge coupling (spintronics) and the
EPFL2021
Show more
Related concepts (2)
Magnonics
Magnonics is an emerging field of modern magnetism, which can be considered a sub-field of modern solid state physics. Magnonics combines the study of waves and magnetism. Its main aim is to investigate the behaviour of spin waves in nano-structure elements. In essence, spin waves are a propagating re-ordering of the magnetisation in a material and arise from the precession of magnetic moments. Magnetic moments arise from the orbital and spin moments of the electron, most often it is this spin moment that contributes to the net magnetic moment.
Spin (physics)
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be understood as in the "rotating internal mass" sense: spin is a quantized wave property. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum.