Category

Characteristic equation

Summary
In mathematics, the characteristic equation (or auxiliary equation) is an algebraic equation of degree n upon which depends the solution of a given nth-order differential equation or difference equation. The characteristic equation can only be formed when the differential or difference equation is linear and homogeneous, and has constant coefficients. Such a differential equation, with y as the dependent variable, superscript (n) denoting nth-derivative, and an, an − 1, ..., a1, a0 as constants, will have a characteristic equation of the form whose solutions r1, r2, ..., rn are the roots from which the general solution can be formed. Analogously, a linear difference equation of the form has characteristic equation discussed in more detail at Linear recurrence with constant coefficients#Solution to homogeneous case. The characteristic roots (roots of the characteristic equation) also provide qualitative information about the behavior of the variable whose evolution is described by the dynamic equation. For a differential equation parameterized on time, the variable's evolution is stable if and only if the real part of each root is negative. For difference equations, there is stability if and only if the modulus of each root is less than 1. For both types of equation, persistent fluctuations occur if there is at least one pair of complex roots. The method of integrating linear ordinary differential equations with constant coefficients was discovered by Leonhard Euler, who found that the solutions depended on an algebraic 'characteristic' equation. The qualities of the Euler's characteristic equation were later considered in greater detail by French mathematicians Augustin-Louis Cauchy and Gaspard Monge. Starting with a linear homogeneous differential equation with constant coefficients an, an − 1, ..., a1, a0, it can be seen that if y(x) = e rx, each term would be a constant multiple of e rx. This results from the fact that the derivative of the exponential function e rx is a multiple of itself.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.