In statistical thermodynamics, thermodynamic beta, also known as coldness, is the reciprocal of the thermodynamic temperature of a system: (where T is the temperature and kB is Boltzmann constant).
It was originally introduced in 1971 (as Kältefunktion "coldness function") by de, one of the proponents of the rational thermodynamics school of thought, based on earlier proposals for a "reciprocal temperature" function.
Thermodynamic beta has units reciprocal to that of energy (in SI units, reciprocal joules, ). In non-thermal units, it can also be measured in byte per joule, or more conveniently, gigabyte per nanojoule; 1 K−1 is equivalent to about 13,062 gigabytes per nanojoule; at room temperature: T = 300K, β ≈ 44GB/nJ ≈ 39eV−1 ≈ 2.4e20J−1. The conversion factor is 1 GB/nJ = J−1.
Thermodynamic beta is essentially the connection between the information theory and statistical mechanics interpretation of a physical system through its entropy and the thermodynamics associated with its energy. It expresses the response of entropy to an increase in energy. If a system is challenged with a small amount of energy, then β describes the amount the system will randomize.
Via the statistical definition of temperature as a function of entropy, the coldness function can be calculated in the microcanonical ensemble from the formula
(i.e., the partial derivative of the entropy S with respect to the energy E at constant volume V and particle number N).
Though completely equivalent in conceptual content to temperature, β is generally considered a more fundamental quantity than temperature owing to the phenomenon of negative temperature, in which β is continuous as it crosses zero whereas T has a singularity.
In addition, β has the advantage of being easier to understand causally: If a small amount of heat is added to a system, β is the increase in entropy divided by the increase in heat. Temperature is difficult to interpret in the same sense, as it is not possible to "Add entropy" to a system except indirectly, by modifying other quantities such as temperature, volume, or number of particles.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers the principles of chemical kinetics, including differential rate laws, derivation of exact and approximate integral rate laws for common elementary and composite reactions, fundament
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Students acquire the abilities to analyze physical systems through the lens of thermodynamics, statistical physics, and special relativity.
In statistical mechanics, a microstate is a specific configuration of a system that describes the precise positions and momenta of all the individual particles or components that make up the system. Each microstate has a certain probability of occurring during the course of the system's thermal fluctuations. In contrast, the macrostate of a system refers to its macroscopic properties, such as its temperature, pressure, volume and density.
In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The principal thermodynamic variable of the canonical ensemble, determining the probability distribution of states, is the absolute temperature (symbol: T).
In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution) is a probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system. The distribution is expressed in the form: where pi is the probability of the system being in state i, exp is the exponential function, εi is the energy of that state, and a constant kT of the distribution is the product of the Boltzmann constant k and thermodynamic temperature T.
This thesis investigates the effects of aluminates, sulfates, and heterogeneous substrates on the nucleation and growth of synthetic calcium-silicate-hydrates (C-S-H) produced by dropwise precipitation. The use of synthetic C-S-H, separate from other cemen ...
EPFL2022
The existing cogeneration systems on offshore petroleum platforms face clashing targets intrinsic to offshore applications, namely, weight, area, cost and efficiency. Moreover, the prolonged offdesign operating conditions during their lifetime further incr ...
2022
,
We study elastic ribbons subject to large, tensile pre-stress confined to a central region within the cross-section. These ribbons can buckle spontaneously to form helical shapes, featuring regions of alternating chirality (phases) that are separated by so ...