Category of topological spacesIn mathematics, the category of topological spaces, often denoted Top, is the whose s are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the .
Diagram (category theory)In , a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a function from a fixed index set to the class of sets. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a functor from a fixed index category to some category.
Kernel (category theory)In and its applications to other branches of mathematics, kernels are a generalization of the kernels of group homomorphisms, the kernels of module homomorphisms and certain other kernels from algebra. Intuitively, the kernel of the morphism f : X → Y is the "most general" morphism k : K → X that yields zero when composed with (followed by) f. Note that kernel pairs and difference kernels (also known as binary equalisers) sometimes go by the name "kernel"; while related, these aren't quite the same thing and are not discussed in this article.
EpimorphismIn , an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms , Epimorphisms are categorical analogues of onto or surjective functions (and in the the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the inclusion is a ring epimorphism. The of an epimorphism is a monomorphism (i.e. an epimorphism in a C is a monomorphism in the Cop).
Commutative diagramIn mathematics, and especially in , a commutative diagram is a such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in algebra. A commutative diagram often consists of three parts: (also known as vertices) morphisms (also known as arrows or edges) paths or composites In algebra texts, the type of morphism can be denoted with different arrow usages: A monomorphism may be labeled with a or a .
Dual (category theory)In , a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements.
CoequalizerIn , a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary . It is the categorical construction to the equalizer. A coequalizer is a colimit of the diagram consisting of two objects X and Y and two parallel morphisms f, g : X → Y. More explicitly, a coequalizer of the parallel morphisms f and g can be defined as an object Q together with a morphism q : Y → Q such that q ∘ f = q ∘ g.
Pullback (category theory)In , a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the of a consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is written P = X ×f, Z, g Y. Usually the morphisms f and g are omitted from the notation, and then the pullback is written P = X ×Z Y. The pullback comes equipped with two natural morphisms P → X and P → Y. The pullback of two morphisms f and g need not exist, but if it does, it is essentially uniquely defined by the two morphisms.
Preadditive categoryIn mathematics, specifically in , a preadditive category is another name for an Ab-category, i.e., a that is over the , Ab. That is, an Ab-category C is a such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas: and where + is the group operation. Some authors have used the term additive category for preadditive categories, but here we follow the current trend of reserving this term for certain special preadditive categories (see below).
Limit (category theory)In , a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as , and inverse limits. The of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, s and direct limits. Limits and colimits, like the strongly related notions of universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize.