**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Uniform norm

Summary

In mathematical analysis, the uniform norm (or ) assigns to real- or complex-valued bounded functions f defined on a set S the non-negative number
This norm is also called the , the , the , or, when the supremum is in fact the maximum, the . The name "uniform norm" derives from the fact that a sequence of functions \left{f_n\right} converges to f under the metric derived from the uniform norm if and only if f_n converges to f uniformly.
If f is a continuous function on a closed and bounded interval, or more generally a compact set, then it is bounded and the supremum in the above definition is attained by the Weierstrass extreme value theorem, so we can replace the supremum by the maximum. In this case, the norm is also called the .
In particular, if x is some vector such that in finite dimensional coordinate space, it takes the form:
The metric generated by this norm is called the , after Pafnuty Chebyshev, who was first to systematically study it.
If we allow unbounded functions, this formula does not yield a norm or metric in a strict sense, although the obtained so-called extended metric still allows one to define a topology on the function space in question.
The binary function
is then a metric on the space of all bounded functions (and, obviously, any of its subsets) on a particular domain. A sequence converges uniformly to a function if and only if
We can define closed sets and closures of sets with respect to this metric topology; closed sets in the uniform norm are sometimes called uniformly closed and closures uniform closures. The uniform closure of a set of functions A is the space of all functions that can be approximated by a sequence of uniformly-converging functions on For instance, one restatement of the Stone–Weierstrass theorem is that the set of all continuous functions on is the uniform closure of the set of polynomials on
For complex continuous functions over a compact space, this turns it into a C* algebra.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (8)

Related publications (60)

Related people (13)

Related lectures (39)

Related units (2)

ME-324: Discrete-time control of dynamical systems

On introduit les bases de l'automatique linéaire discrète qui consiste à appliquer une commande sur des intervalles uniformément espacés. La cadence de l'échantillonnage qui est associée joue un rôle

COM-406: Foundations of Data Science

We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an

MATH-502: Distribution and interpolation spaces

The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor

Related concepts (16)

Ontological neighbourhood

Sobolev Spaces in Higher Dimensions

Explores Sobolev spaces in higher dimensions, discussing derivatives, properties, and challenges with continuity.

Global Properties of Continuous Functions

Explores the global properties of continuous functions, including behavior, limits, and interval characteristics.

Real Numbers: Definitions and Equivalence Classes

Covers the existence of real numbers and equivalence classes of Cauchy sequences.

Dense set

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, is dense in if the smallest closed subset of containing is itself.

Extreme value theorem

In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed interval , then must attain a maximum and a minimum, each at least once. That is, there exist numbers and in such that: The extreme value theorem is more specific than the related boundedness theorem, which states merely that a continuous function on the closed interval is bounded on that interval; that is, there exist real numbers and such that: This does not say that and are necessarily the maximum and minimum values of on the interval which is what the extreme value theorem stipulates must also be the case.

Bounded function

In mathematics, a function f defined on some set X with real or complex values is called bounded if the set of its values is bounded. In other words, there exists a real number M such that for all x in X. A function that is not bounded is said to be unbounded. If f is real-valued and f(x) ≤ A for all x in X, then the function is said to be bounded (from) above by A. If f(x) ≥ B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below.

Victor Panaretos, Yoav Zemel, Valentina Masarotto

We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...

Alireza Karimi, Vaibhav Gupta, Philippe Louis Schuchert

The frequency response data of a generalized system is used to design fixed-structure controllers for the H2 and H∞ synthesis problem. The minimization of the two and infinity norm of the transfer function between the exogenous inputs and performance outpu ...

2023Yves-Marie François Ducimetière

In this thesis, we propose to formally derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or stochastic forcing, or to an initial condition. This approach reconciles the non-mo ...