In geology, the slab is a significant constituent of subduction zones .
Subduction slabs drive plate tectonics by pulling along the lithosphere to which they attach in a process known as slab pull and by inducing currents in the mantle via slab suction. The slab affects the convection and evolution of the Earth's mantle due to the insertion of the hydrous oceanic lithosphere. Dense oceanic lithosphere retreats into the Earth's mantle, while lightweight continental lithospheric material produces active continental margins and volcanic arcs, generating volcanism. Recycling the subducted slab presents volcanism by flux melting from the mantle wedge. The slab motion can cause dynamic uplift and subsidence of the Earth's surface, forming shallow seaways and potentially rearranging drainage patterns.
Geologic features of the subsurface can infer subducted slabs by seismic imaging. Subduction slabs are dynamic; slab characteristics such as slab temperature evolution, flat-slab, deep-slab, and slab detachment can be expressed globally near subduction zones. Temperature gradients of subducted slabs depend on the oceanic plate's time and thermal structures. Slabs experiencing low angle (less than 30 degrees) subduction is considered flat-slab, primarily in southern China and the western United States. Marianas Trench is an example of a deep slab, thereby creating the deepest trench in the world established by a steep slab angle. Slab breakoff occurs during a collision between oceanic and continental lithosphere, allowing for a slab tear; an example of slab breakoff occurs within the Himalayan subduction zone.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mantle convection is the very slow creeping motion of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. The Earth's surface lithosphere rides atop the asthenosphere and the two form the components of the upper mantle. The lithosphere is divided into a number of tectonic plates that are continuously being created or consumed at plate boundaries. Accretion occurs as mantle is added to the growing edges of a plate, associated with seafloor spreading.
A volcanic arc (also known as a magmatic arc) is a belt of volcanoes formed above a subducting oceanic tectonic plate, with the belt arranged in an arc shape as seen from above. Volcanic arcs typically parallel an oceanic trench, with the arc located further from the subducting plate than the trench. The oceanic plate is saturated with water, mostly in the form of hydrous minerals such as micas, amphiboles, and serpentines. As the oceanic plate is subducted, it is subjected to increasing pressure and temperature with increasing depth.
Oceanic trenches are prominent, long, narrow topographic depressions of the ocean floor. They are typically wide and below the level of the surrounding oceanic floor, but can be thousands of kilometers in length. There are about of oceanic trenches worldwide, mostly around the Pacific Ocean, but also in the eastern Indian Ocean and a few other locations. The greatest ocean depth measured is in the Challenger Deep of the Mariana Trench, at a depth of below sea level. Oceanic trenches are a feature of the Earth's distinctive plate tectonics.
Strengthening of flat slab-column connections to resist imposed lateral drifts is often required for older reinforced concrete structures in which the flat slabs were typically designed to resist gravity load only or have been designed for less stringent r ...
TAYLOR & FRANCIS LTD2022
, , ,
(Mg,Fe)O ferropericlase-magnesiow & uuml;stite has been proposed to host the majority of Earth's sodium, but the mechanism and capacity for incorporating the alkali cation remain unclear. In this work, experiments in the laser-heated diamond anvil cell and ...
Amer Geophysical Union2024
,
Punching shear resistance formulations provided by codes are usually calibrated on test results of isolated specimens that typically simulate the slab zone within the points of contraflexure around the column (hogging area). However, the behaviour of actua ...