A lenticel is a porous tissue consisting of cells with large intercellular spaces in the periderm of the secondarily thickened organs and the bark of woody stems and roots of gymnosperms and dicotyledonous flowering plants. It functions as a pore, providing a pathway for the direct exchange of gases between the internal tissues and atmosphere through the bark, which is otherwise impermeable to gases. The name lenticel, pronounced with an s, derives from its lenticular (lens-like) shape. The shape of lenticels is one of the characteristics used for tree identification. Before there was much evidence for the existence and functionality of lenticels, the fossil record has shown the first primary mechanism of aeration in early vascular plants to be the stomata. However, in woody plants, with vascular and cork cambial activity and secondary growth, the entire epidermis may be replaced by a suberized periderm or bark in which the functions of the stomata are replaced by lenticels. The extinct arboreal plants of the genera Lepidodendron and Sigillaria were the first to have distinct aeration structures that rendered these modifications. "Parichnoi" (singular: parichnos) are canal-like structures that, in association with foliar traces of the stem, connected the stem's outer and middle cortex to the mesophyll of the leaf. Parichnoi were thought to eventually give rise to lenticels as they helped solve the issue of long-range oxygen transport in these woody plants during the Carboniferous period. They also acquired secondary connections as they evolved to become transversely elongated to efficiently aerate the maximum number of vertical rays as well as the central core tissue of the stem. The evolutionary significance of parichnoi was their functionality in the absence of cauline stomata, where they can also be affected and destroyed by pressure similar to what can damage to stomatal tissue. Evidently, in both conifers and Lepidodendroids, the parichnoi, as the primary lenticular structure, appear as paired structures on either side of leaf scars.