Summary
In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function. A name sometimes used for Hecke character is the German term Größencharakter (often written Grössencharakter, Grossencharacter, etc.). A Hecke character is a character of the idele class group of a number field or global function field. It corresponds uniquely to a character of the idele group which is trivial on principal ideles, via composition with the projection map. This definition depends on the definition of a character, which varies slightly between authors: It may be defined as a homomorphism to the non-zero complex numbers (also called a "quasicharacter"), or as a homomorphism to the unit circle in C ("unitary"). Any quasicharacter (of the idele class group) can be written uniquely as a unitary character times a real power of the norm, so there is no big difference between the two definitions. The conductor of a Hecke character χ is the largest ideal m such that χ is a Hecke character mod m. Here we say that χ is a Hecke character mod m if χ (considered as a character on the idele group) is trivial on the group of finite ideles whose every v-adic component lies in 1 + mOv. The original definition of a Hecke character, going back to Hecke, was in terms of a character on fractional ideals. For a number field K, let m = mfm∞ be a K-modulus, with mf, the "finite part", being an integral ideal of K and m∞, the "infinite part", being a (formal) product of real places of K. Let Im denote the group of fractional ideals of K relatively prime to mf and let Pm denote the subgroup of principal fractional ideals (a) where a is near 1 at each place of m in accordance with the multiplicities of its factors: for each finite place v in mf, ordv(a − 1) is at least as large as the exponent for v in mf, and a is positive under each real embedding in m∞.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-482: Number theory I.a - Algebraic number theory
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
MATH-417: Number theory II.b - selected topics
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
MATH-603: Subconvexity, Periods and Equidistribution
This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the