En théorie des nombres, un caractère de Hecke est une généralisation d'un caractère de Dirichlet, introduit par Erich Hecke pour construire une classe de fonctions L plus importante que les fonctions L de Dirichlet, et un cadre naturel pour les fonctions zêta de Dedekind et certaines autres qui ont des fonctions fonctionnelles analogues à celle de la fonction zêta de Riemann.
Un nom parfois utilisé pour le caractère Hecke est le terme allemand Größencharakter (souvent écrit Grössencharakter, Grossencharacter, etc. ).
Un caractère Hecke est un caractère du groupe de classe des idèles d'un corps de nombre ou d'un corps global. Il correspond de manière unique à un caractère du groupe des idèles algébrique qui est trivial sur idèles principaux, via la composition avec la carte de projection.
Cette définition dépend de la définition d'un caractère, qui varie légèrement d'un auteur à l'autre : il peut être défini comme un homomorphisme à valeur dans les complexes non nuls (aussi appelé « quasi-caractère »), ou comme un homomorphisme sur le cercle unité (« unitaire »). Tout quasi-caractère (du groupe de classe des idèles) peut être écrit de manière unique comme un caractère unitaire multiplié par une puissance réelle de la norme, il n'y a donc pas de grande différence entre les deux définitions.
Le conducteur d'un caractère de Hecke χ est le plus grand idéal m tel que χ soit un caractère de Hecke mod m. On dit ici que χ est un caractère de Hecke mod m si χ (considéré comme un caractère sur le groupe des idèles) est trivial sur le groupe des idèles finis dont toute composante v-adique appartient à 1 + mOv.
La définition originale d'un caractère de Hecke était formulée en termes d'idéaux fractionnaires. Pour un corps de nombres K, soit m = mfm∞ un K-module, avec mf, la partie finie étant un idéal entier de K et m∞, la partie infinie, étant un produit de places réelles de K.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, la 'loi de réciprocité d'Artin' est un résultat important de théorie des nombres établi par Emil Artin dans une série d'articles publiés entre 1924 et 1930. Au cœur de la théorie du corps de classe, la réciprocité d'Artin tire son nom d'une parenté avec la réciprocité quadratique introduite par Gauss, et d'autres lois d'expression similaire, la réciprocité d'Eisenstein, de Kummer, ou de Hilbert. Une des motivations initiales derrière ce résultat était le neuvième problème de Hilbert, auquel la réciprocité d'Artin apporte une réponse partielle.
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality. Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the
Let K be a totally real number field of degree n >= 2. The inverse different of K gives rise to a lattice in Rn. We prove that the space of Schwartz Fourier eigenfunctions on R-n which vanish on the "component-wise square root" of this lattice, is infinite ...
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
We prove that the coefficients of a GL3 x GL2 Rankin-Selberg L-function do not correlate with a wide class of trace functions of small conductor modulo primes, generalizing the corresponding result of Fouvry, Kowalski, and Michel for GL2 and of Kowalski, L ...