A non-directional beacon (NDB) or non-directional radio beacon is a radio beacon which does not include directional information. Radio beacons are radio transmitters at a known location, used as an aviation or marine navigational aid. NDB are in contrast to directional radio beacons and other navigational aids, such as low-frequency radio range, VHF omnidirectional range (VOR) and tactical air navigation system (TACAN).
NDB signals follow the curvature of the Earth, so they can be received at much greater distances at lower altitudes, a major advantage over VOR. However, NDB signals are also affected more by atmospheric conditions, mountainous terrain, coastal refraction and electrical storms, particularly at long range. The system, developed by United States Air Force (USAF) Captain Albert Francis Hegenberger, was used to fly the world's first instrument approach on May 9, 1932.
NDBs used for aviation are standardised by International Civil Aviation Organization (ICAO) Annex 10 which specifies that NDBs be operated on a frequency between 190 kHz and 1750 kHz, although normally all NDBs in North America operate between 190 kHz and 535 kHz. Each NDB is identified by a one, two, or three-letter Morse code callsign. In Canada, privately owned NDB identifiers consist of one letter and one number.
Non-directional beacons in North America are classified by power output: "low" power rating is less than 50 watts; "medium" from 50 W to 2,000 W; and "high" at more than 2,000 W.
There are four types of non-directional beacons in the aeronautical navigation service:
En route NDBs, used to mark airways
Approach NDBs
Localizer beacons
Locator beacons
The last two types are used in conjunction with an instrument landing system (ILS).
Automatic direction finder
NDB navigation consists of two parts — the automatic direction finder (ADF) equipment on the aircraft that detects an NDB's signal, and the NDB transmitter. The ADF can also locate transmitters in the standard AM medium wave broadcast band (530 kHz to 1700 kHz at 10 kHz increments in the Americas, 531 kHz to 1602 kHz at 9 kHz increments in the rest of the world).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
Radio navigation or radionavigation is the application of radio frequencies to determine a position of an object on the Earth, either the vessel or an obstruction. Like radiolocation, it is a type of radiodetermination. The basic principles are measurements from/to electric beacons, especially Angular directions, e.g. by bearing, radio phases or interferometry, Distances, e.g. ranging by measurement of time of flight between one transmitter and multiple receivers or vice versa, Distance differences by measurement of times of arrival of signals from one transmitter to multiple receivers or vice versa Partly also velocity, e.
In aviation, the instrument landing system (ILS) is a precision radio navigation system that provides short-range guidance to aircraft to allow them to approach a runway at night or in bad weather. In its original form, it allows an aircraft to approach until it is over the ground, within a of the runway. At that point the runway should be visible to the pilot; if it is not, they perform a missed approach. Bringing the aircraft this close to the runway dramatically increases the range of weather conditions in which a safe landing can be made.
This article presents a calibration transfer methodology that can be used between radars of the same or dif-ferent frequency bands. This method enables the absolute calibration of a cloud radar by transferring it from another collocated instrument with kno ...
AMER METEOROLOGICAL SOC2023
,
Accurate localization is one of the biggest challenges in underwater robotics. The primary reasons behind that are unavailability of satellite-based positioning below the surface, and lack of clear features in natural water bodies for visually aided locali ...
2021
Consensus protocols for asynchronous networks are usually complex and inefficient, leading practical systems to rely on synchronous protocols. This paper attempts to simplify asynchronous consensus by building atop a novel threshold logical clock abstracti ...