Generating functionIn mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.
Prime omega functionIn number theory, the prime omega functions and count the number of prime factors of a natural number Thereby (little omega) counts each distinct prime factor, whereas the related function (big omega) counts the total number of prime factors of honoring their multiplicity (see arithmetic function). That is, if we have a prime factorization of of the form for distinct primes (), then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
Ramanujan's sumIn number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula where (a, q) = 1 means that a only takes on values coprime to q. Srinivasa Ramanujan mentioned the sums in a 1918 paper. In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes.
Lambert seriesIn mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form It can be resumed formally by expanding the denominator: where the coefficients of the new series are given by the Dirichlet convolution of an with the constant function 1(n) = 1: This series may be inverted by means of the Möbius inversion formula, and is an example of a Möbius transform. Since this last sum is a typical number-theoretic sum, almost any natural multiplicative function will be exactly summable when used in a Lambert series.
Jordan's totient functionLet be a positive integer. In number theory, the Jordan's totient function of a positive integer equals the number of -tuples of positive integers that are less than or equal to and that together with form a coprime set of integers. Jordan's totient function is a generalization of Euler's totient function, which is given by . The function is named after Camille Jordan. For each , Jordan's totient function is multiplicative and may be evaluated as where ranges through the prime divisors of .
Analytic continuationIn complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent. The step-wise continuation technique may, however, come up against difficulties. These may have an essentially topological nature, leading to inconsistencies (defining more than one value).
Prime number theoremIn mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).
Average order of an arithmetic functionIn number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average". Let be an arithmetic function. We say that an average order of is if as tends to infinity. It is conventional to choose an approximating function that is continuous and monotone. But even so an average order is of course not unique. In cases where the limit exists, it is said that has a mean value (average value) .
Additive functionIn number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b: An additive function f(n) is said to be completely additive if holds for all positive integers a and b, even when they are not coprime. Totally additive is also used in this sense by analogy with totally multiplicative functions. If f is a completely additive function then f(1) = 0.
Inclusion–exclusion principleIn combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as where A and B are two finite sets and |S | indicates the cardinality of a set S (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice.