Information extractionInformation extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction Due to the difficulty of the problem, current approaches to IE (as of 2010) focus on narrowly restricted domains.
SPSSSPSS Statistics is a statistical software suite developed by IBM for data management, advanced analytics, multivariate analysis, business intelligence, and criminal investigation. Long produced by SPSS Inc., it was acquired by IBM in 2009. Versions of the software released since 2015 have the brand name IBM SPSS Statistics. The software name originally stood for Statistical Package for the Social Sciences (SPSS), reflecting the original market, then later changed to Statistical Product and Service Solutions.
Named-entity recognitionNamed-entity recognition (NER) (also known as (named) entity identification, entity chunking, and entity extraction) is a subtask of information extraction that seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc. Most research on NER/NEE systems has been structured as taking an unannotated block of text, such as this one: Jim bought 300 shares of Acme Corp.
Data and information visualizationData and information visualization (data viz or info viz) is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items.
Document classificationDocument classification or document categorization is a problem in library science, information science and computer science. The task is to assign a document to one or more classes or categories. This may be done "manually" (or "intellectually") or algorithmically. The intellectual classification of documents has mostly been the province of library science, while the algorithmic classification of documents is mainly in information science and computer science.
AnnotationAn annotation is extra information associated with a particular point in a document or other piece of information. It can be a note that includes a comment or explanation. Annotations are sometimes presented in the margin of book pages. For annotations of different digital media, see web annotation and text annotation. Annotation Practices are highlighting a phrase or sentence and including a comment, circling a word that needs defining, posing a question when something is not fully understood and writing a short summary of a key section.
Automatic summarizationAutomatic summarization is the process of shortening a set of data computationally, to create a subset (a summary) that represents the most important or relevant information within the original content. Artificial intelligence algorithms are commonly developed and employed to achieve this, specialized for different types of data. Text summarization is usually implemented by natural language processing methods, designed to locate the most informative sentences in a given document.
Tag (metadata)In information systems, a tag is a keyword or term assigned to a piece of information (such as an Internet bookmark, multimedia, database record, or ). This kind of metadata helps describe an item and allows it to be found again by browsing or searching. Tags are generally chosen informally and personally by the item's creator or by its viewer, depending on the system, although they may also be chosen from a controlled vocabulary. Tagging was popularized by websites associated with Web 2.
Orange (software)Orange is an open-source data visualization, machine learning and data mining toolkit. It features a visual programming front-end for explorative qualitative data analysis and interactive data visualization. Orange is a component-based visual programming software package for data visualization, machine learning, data mining, and data analysis. Orange components are called widgets. They range from simple data visualization, subset selection, and preprocessing to empirical evaluation of learning algorithms and predictive modeling.
Data analysisData analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively.