Concept

MEMS for in situ mechanical characterization

Summary
MEMS for in situ mechanical characterization refers to microelectromechanical systems (MEMS) used to measure the mechanical properties (such as the Young’s modulus and fracture strength) of nanoscale specimens such as nanowires, nanorods, whiskers, nanotubes and thin films. They distinguish themselves from other methods of nanomechanical testing because the sensing and actuation mechanisms are embedded and/or co-fabricated in the microsystem, providing—in the majority of cases—greater sensitivity and precision. This level of integration and miniaturization allows carrying out the mechanical characterization in situ, i.e., testing while observing the evolution of the sample in high magnification instruments such as optical microscopes, scanning electron microscopes (SEM), transmission electron microscopes (TEM) and X-ray setups. Furthermore, analytical capabilities of these instruments such as spectroscopy and diffraction can be used to further characterize the sample, providing a com
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading