Catherine DehollainShe got the Master Degree in Electrical Engineering in 1982 from EPFL. Then, she worked in Geneva up to 1990 as a Senior Design Engineer in telecommunications at the European research center of Motorola. From 1990 up to 1995, she did her PhD thesis at the Chaire des Circuits et Systemes at EPFL in the domain of impedance broadband matching circuits. Since 1995, she is responsible at EPFL for the RFIC group. She has participated to different Swiss research projects as well as European projects dedicated to data communication of sensors nodes (e.g. MuMoR, Minami European projects) as well as remote powering of sensor nodes. Her main domains of interest are telecom applications (e.g. Impulse radio Ultra-Wide Band, super-regenerative receivers, RFIDs)as well as biomedical applications. She has been the coordinator of European projects (e.g. FP6 SUPREGE, FP7 Ultrasponder)and of Swiss projects (e.g. CAPED CTI project, NEURO-IC SNF project).
Christian EnzChristian C. Enz (M84, S'12) received the M.S. and Ph.D. degrees in Electrical Engineering from the EPFL in 1984 and 1989 respectively. From 1984 to 1989 he was research assistant at the EPFL, working in the field of micro-power analog IC design. In 1989 he was one of the founders of Smart Silicon Systems S.A. (S3), where he developed several low-noise and low-power ICs, mainly for high energy physics applications. From 1992 to 1997, he was an Assistant Professor at EPFL, working in the field of low-power analog CMOS and BiCMOS IC design and device modeling. From 1997 to 1999, he was Principal Senior Engineer at Conexant (formerly Rockwell Semiconductor Systems), Newport Beach, CA, where he was responsible for the modeling and characterization of MOS transistors for the design of RF CMOS circuits. In 1999, he joined the Swiss Center for Electronics and Microtechnology (CSEM) where he launched and lead the RF and Analog IC Design group. In 2000, he was promoted Vice President, heading the Microelectronics Department, which became the Integrated and Wireless Systems Division in 2009. He joined the EPFL as full professor in 2013, where he is currently the director of the Institute of Microengineering (IMT) and head of the Integrated Circuits Laboratory (ICLAB).He is lecturing and supervising undergraduate and graduate students in the field of Analog and RF IC Design at EPFL. His technical interests and expertise are in the field of very low-power analog and RF IC design, semiconductor device modeling, and inexact and error tolerant circuits and systems.He has published more than 200 scientific papers and has contributed to numerous conference presentations and advanced engineering courses. Together with E. Vittoz and F. Krummenacher he is one of the developer of the EKV MOS transistor model and the author of the book "Charge-Based MOS Transistor Modeling - The EKV Model for Low-Power and RF IC Design" (Wiley, 2006). He has been member of several technical program committees, including the International Solid-State Circuits Conference (ISSCC) and European Solid-State Circuits Conference (ESSCIRC). He has served as a vice-chair for the 2000 International Symposium on Low Power Electronics and Design (ISLPED), exhibit chair for the 2000 International Symposium on Circuits and Systems (ISCAS) and chair of the technical program committee for the 2006 European Solid-State Circuits Conference (ESSCIRC). Since 2012 he has been elected as member of the IEEE Solid-State Circuits Society (SSCS) Administrative Commmittee (AdCom). He is also Chair of the IEEE SSCS Chapter of Switzerland.
Alexandre SchmidAlexandre Schmid received the M.Sc. degree in microengineering and the Ph.D. degree in electrical engineering from the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in 1994 and 2000, respectively. Since 1994, he has been with the EPFL, working with the Integrated Systems Laboratory as a Research and Teaching Assistant, and with the Electronics Laboratories as a Postdoctoral Fellow. In 2002, he was a Senior Research Associate with the Microelectronic Systems Laboratory, where he has been conducting research in the fields of bioelectronic interfaces and implantable biomedical electronics, nonconventional signal processing and neuromorphic hardware, and reliability of nanoelectronic devices, and also teaches with the Microengineering and Electrical Engineering Departments of EPFL. Since 2011, he is a Maître d'Enseignement et de Recherche (MER) Faculty Member with EPFL. He is a coauthor of two books, Reliability of Nanoscale Circuits and Systems, Methodologies and Circuit Architectures, Springer, 2011, and Wireless Cortical Implantable Systems, Springer, 2013, and a coeditor of one book, as well as over 100 articles published in journals and conferences.
Dr. Schmid has served as the General Chair of the Fourth International Conference on Nano-Networks in 2009 and has been serving as an Associate Editor of the Institute of Electrical, Information, and Communication Engineers Electronics Express since 2009.
Maher KayalMaher Kayal received M.S. and Ph.D degrees in electrical engineering from the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) in 1983 and 1989 respectively. He has been with the Electronics laboratories of the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) since 1990, where he is currently a professor and director of the Energy Management and Sustainability" section. He has published many scientific papers, coauthor of three text books dedicated to mixed-mode CMOS design and he holds eleven patents. His technical contributions have been in the area of analog and Mixed-signal circuits design including highly linear and tunable sensors microsystems, signal processing and green energy management.
Prizes and Honors
Electronics Letters journal Premium Award 2013,
Outstanding Paper Award? IEEE Mixdes 2013
Basil Papadias paper Award, IEEE Powertech 2013
Best Paper Awards, Mixdes 2013
Best Paper Awards, ICCAS 2012
Outstanding Paper Award- IEEE Mixdes 2012.
Poland Section IEEE ED Chapter special award in 2011.
Credit Suisse Award for Best Teaching- 2009.
The William M. Portnoy Award at the Energy Conversion Congress and Exposition , California Sept 2009.
Best Paper Award - IEEE-Mixdes 2009.
High Quality Paper - IEEE Power Tech Conference June 2009.
Best Paper Award - IEEE-Mixdes 2007.
Best Paper Award - IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics - 2006.
Best Application Specific Integrated Circuit at the International European Design and Test Conference ED&TC - 1997.
Ascom Award for the Best Work in Telecommunication Fields 1990.
Publications Books.
Books:
Methodology for the Digital Calibration of Analog Circuits and Systems, Marc Pastre & Maher Kayal. Springer Publisher- (ISBN 1-4020-4252-3)-2006.
Structured Analog CMOS Design, Danica Stefanovic & Maher Kayal. Springer Publisher-(ISBN 978-1-4020-8572-7)-2008.
Linear CMOS RF Amplifiers for Wireless Applications, Maher Kayal, Springer Publisher. (ISBN 978-90-481-9360-8)-2010.
Coeditor of Microelectronics Education Kluwer Academic Publishers. (ISBN 1-4020-2072-4). -2004.
Pierre-André FarinePierre-André Farine received the Doctoral and Engineering Degrees in Microtechnology from University of Neuchâtel, Switzerland, respectively in 1984 and 1978, and the Engineering in Microtechnology from ETS Le Locle in 1974.
He was working 17 years for the Swiss watch industries (Swatch Group), including developments for high-tech products, such as pager watches, watches including integrated sensors such as pressure, compass, altimeter and temperature sensors for Tissot. He was also involved in prototypes developments for watches including GPS and cellular GSM phones.
Since 8 years, he is Professor in Electronics and Signal Processing at the Institute of Microtechnology IMT, University of Neuchâtel, Switzerland. Full professor at EPFL since January 1st, 2009, he works in the field of low-power integrated products for portable devices, including microelectronics for wireless telecommunications, UWB and GNSS systems. He is Head of the Electronics and Signal Processing Laboratory ESPLAB of the EPFL IMT-NE. His laboratory works also for video and audio compression algorithms and their implementation in low power integrated circuits.
Michel DeclercqMichel J. Declercq received the Electrical Engineering degree and the PhD degree from the Catholic University of Louvain, Belgium, in 1967 and 1971, respectively. In 1973, he was awarded a Senior Fulbright Fellowship, and joined Stanford University as a Research Associate in the Microelectronics Labs. From 1974 to 1978, he was Research Associate and lecturer at the Catholic University of Louvain, Belgium. In 1978, he joined the company Tractebel in Brussels, Belgium, where he was Group Leader of the Electronic Systems team.
In 1985, Dr. Declercq joined the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, where he is currently Professor, Dean of the School of Engineering, and Director of the Electronics Laboratory. His research activities are related to mixed analog-digital I.C. design and design methodologies. He is more particularly involved in low-power/low-voltage circuits, high-frequency circuits for telecommunications, MEMS and RF-MEMS, SOI technology and circuits, high-voltage circuits and Nano-electronics. He is author and co-author of more than 220 scientific publications and 3 books, and holds several patents.
He is a Fellow of the IEEE (Institute of Electrical and Electronic Engineers).
Professor Declercq is expert by the European Commission for the scientific research programs in Information Technologies.
Kyojin ChooProfessor Kyojin Choo received his B.S. and M.S. degree in electrical engineering from Seoul National University, Seoul, Korea, in 2007 and 2009, respectively. In 2018, he received his Ph.D. degree at the University of Michigan, Ann Arbor, MI, USA.
From 2009 to 2013, he was with Image Sensor Development Team of Samsung Electronics, Yong-In, Korea, where he designed signal readout chains for mobile/DSLR image sensors. From 2018 to 2021, he was with University of Michigan, Ann Arbor, MI, USA, as a Post-Doctoral Research Fellow, and he recently joined Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland, as an Assistant Professor. He holds more than 20 US patents and his research interests include charge-domain circuits, sensor interfaces, energy converters, high-speed links/timing generators, and millimeter-scale integrated systems.
Edoardo CharbonEdoardo Charbon (SM’00 F’17) received the Elektrotechnik Diploma from ETH Zurich, the M.S. from the University of California at San Diego, and the Ph.D. from the University of California at Berkeley in 1988, 1991, and 1995, respectively, all in electrical engineering and EECS. He has consulted with numerous organizations, including Bosch, X-Fab, Texas Instruments, Maxim, Sony, Agilent, and the Carlyle Group. He was with Cadence Design Systems from 1995 to 2000, where he was the architect of the company's initiative on information hiding for intellectual property protection. In 2000, he joined Canesta Inc., as the Chief Architect, where he led the development of wireless 3-D CMOS image sensors. Since 2002 he has been a member of the faculty of EPFL, where is a full professor since 2015. From 2008 to 2016 he was full professor and chair at the Delft University of Technology, where he spearheaded the university's effort on cryogenic electronics for quantum computing as part of QuTech. He has been the driving force behind the creation of deep-submicron CMOS SPAD technology, which is mass-produced since 2015 and is present in smartphones, telemeters, proximity sensors, and medical diagnostics tools. His interests span from 3-D vision, LiDAR, FLIM, FCS, NIROT to super-resolution microscopy, time-resolved Raman spectroscopy, and cryo-CMOS circuits and systems for quantum computing. He has authored or co-authored over 400 papers and two books, and he holds 23 patents. Dr. Charbon is a distinguished visiting scholar of the W. M. Keck Institute for Space at Caltech, a fellow of the Kavli Institute of Nanoscience Delft, a distinguished lecturer of the IEEE Photonics Society, and a fellow of the IEEE.
Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006).