Majority judgment (MJ) is a single-winner voting system proposed in 2010 by Michel Balinski and Rida Laraki. It uses a highest median rule, i.e., a cardinal voting system that elects the candidate with the highest median rating.
Unlike other voting methods, MJ guarantees that the winner between three or more candidates will be the candidate who had received an absolute majority of the highest grades given by all the voters.
Voters grade as many of the candidates' as they wish with regard to their suitability for office as either Excellent (ideal), Very Good, Good, Acceptable, Poor, or Reject. Multiple candidates may be given the same grade by a voter. Any candidate not explicitly graded by a voter is counted as having been rejected by the voter. Therefore, each candidate receives the same total number of grades, but a different distribution of them.
The candidate with the highest median grade is the winner. This median-grade can be found as follows: Place all the grades, high to low, top to bottom, in side-by-side columns, the name of each candidate at the top of each of these columns. The median-grade for each candidate is the grade located halfway down each column, i.e. in the middle if there is an odd number of voters, the lower middle if the number is even. If more than one candidate has the same highest median-grade, the MJ winner is discovered by removing (one-by-one) any grades equal in value to the shared median grade from each tied candidate's column. This is repeated until only one of the previously tied candidates is currently found to have the highest median grade. Equivalently, the candidates can be ranked according to a simple mathematical formula described on the page: highest median voting rules.
As it is a highest median rule, MJ produces more informative results than the existing alternatives. It is true that if only one of two candidates is to be elected, and the winner has only a few votes more than the near winner, MJ and all the alternative voting methods would discover the same winner.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cardinal voting refers to any electoral system which allows the voter to give each candidate an independent evaluation, typically a rating or grade. These are also referred to as "rated" (ratings ballot), "evaluative", "graded", or "absolute" voting systems. Cardinal methods (based on cardinal utility) and ordinal methods (based on ordinal utility) are two main categories of modern voting systems, along with plurality voting. There are several voting systems that allow independent ratings of each candidate.
Bucklin voting is a class of voting methods that can be used for single-member and multi-member districts. As in highest median rules like the majority judgment, the Bucklin winner will be one of the candidates with the highest median ranking or rating. It is named after its original promoter, the Georgist politician James W. Bucklin of Grand Junction, Colorado, and is also known as the Grand Junction system. Bucklin rules varied, but here is a typical example: Voters are allowed rank preference ballots (first, second, third, etc.
Comparison of electoral systems is the result of comparative politics for electoral systems. Electoral systems are the rules for conducting elections, a main component of which is the algorithm for determining the winner (or several winners) from the ballots cast. This article discusses methods and results of comparing different electoral systems, both those that elect a unique candidate in a 'single-winner' election and those that elect a group of representatives in a multiwinner election.
In Virtual Reality, having a virtual body opens a wide range of possibilities as the participant's avatar can appear to be quite different from oneself for the sake of the targeted application (e.g. for perspective-taking). In addition, the system can part ...
We study the phenomenon of intransitivity in models of dice and voting. First, we follow a recent thread of research for n-sided dice with pairwise ordering induced by the probability, relative to 1/2, that a throw from one die is higher than the other. We ...
2020
Due to the steady tendency to propose highly customized products and to respond to volatile (i.e random) demands, Flexible Manufacturing Systems (FMS) are now present in most shopfloors. In this thesis, flexibility in a FMS is understood as the ability of ...