Full virtualizationIn computer science, full virtualization (fv) employs techniques used to create instances of an environment, as opposed to simulation, which models the environment; or emulation, which replicates the target environment such as certain kinds of virtual machine environments. Full virtualization requires that every salient feature of the hardware be reflected into one of several virtual machines – including the full instruction set, input/output operations, interrupts, memory access, and whatever other elements are used by the software that runs on the bare machine, and that is intended to run in a virtual machine.
Real-time operating systemA real-time operating system (RTOS) is an operating system (OS) for real-time computing applications that processes data and events that have critically defined time constraints. An RTOS is distinct from a time-sharing operating system, such as Unix, which manages the sharing of system resources with a scheduler, data buffers, or fixed task prioritization in a multitasking or multiprogramming environment. Processing time requirements need to be fully understood and bound rather than just kept as a minimum.
Hardware-assisted virtualizationIn computing, hardware-assisted virtualization is a platform virtualization approach that enables efficient full virtualization using help from hardware capabilities, primarily from the host processors. A full virtualization is used to emulate a complete hardware environment, or virtual machine, in which an unmodified guest operating system (using the same instruction set as the host machine) effectively executes in complete isolation. Hardware-assisted virtualization was added to x86 processors (Intel VT-x, AMD-V or VIA VT) in 2005, 2006 and 2010 (respectively).
OpcodeIn computing, an opcode (abbreviated from operation code, also known as instruction machine code, instruction code, instruction syllable, instruction parcel or opstring) is the portion of a machine language instruction that specifies the operation to be performed. Beside the opcode itself, most instructions also specify the data they will process, in the form of operands. In addition to opcodes used in the instruction set architectures of various CPUs, which are hardware devices, they can also be used in abstract computing machines as part of their byte code specifications.
Common Language RuntimeThe Common Language Runtime (CLR), the virtual machine component of Microsoft .NET Framework, manages the execution of .NET programs. Just-in-time compilation converts the managed code (compiled intermediate language code) into machine instructions which are then executed on the CPU of the computer. The CLR provides additional services including memory management, type safety, exception handling, garbage collection, security and thread management. All programs written for the .
Popek and Goldberg virtualization requirementsThe Popek and Goldberg virtualization requirements are a set of conditions sufficient for a computer architecture to support system virtualization efficiently. They were introduced by Gerald J. Popek and Robert P. Goldberg in their 1974 article "Formal Requirements for Virtualizable Third Generation Architectures". Even though the requirements are derived under simplifying assumptions, they still represent a convenient way of determining whether a computer architecture supports efficient virtualization and provide guidelines for the design of virtualized computer architectures.
HyperjackingHyperjacking is an attack in which a hacker takes malicious control over the hypervisor that creates the virtual environment within a virtual machine (VM) host. The point of the attack is to target the operating system that is below that of the virtual machines so that the attacker's program can run and the applications on the VMs above it will be completely oblivious to its presence. Hyperjacking involves installing a malicious, fake hypervisor that can manage the entire server system.
Dynamic recompilationIn computer science, dynamic recompilation is a feature of some emulators and virtual machines, where the system may recompile some part of a program during execution. By compiling during execution, the system can tailor the generated code to reflect the program's run-time environment, and potentially produce more efficient code by exploiting information that is not available to a traditional static compiler. Most dynamic recompilers are used to convert machine code between architectures at runtime.
Limbo (programming language)Limbo is a programming language for writing distributed systems and is the language used to write applications for the Inferno operating system. It was designed at Bell Labs by Sean Dorward, Phil Winterbottom, and Rob Pike. The Limbo compiler generates architecture-independent object code which is then interpreted by the Dis virtual machine or compiled just before runtime to improve performance. Therefore all Limbo applications are completely portable across all Inferno platforms.
Software-defined storageSoftware-defined storage (SDS) is a marketing term for computer data storage software for policy-based provisioning and management of data storage independent of the underlying hardware. Software-defined storage typically includes a form of storage virtualization to separate the storage hardware from the software that manages it. The software enabling a software-defined storage environment may also provide policy management for features such as data deduplication, replication, thin provisioning, snapshots and backup.