Systems ecology is an interdisciplinary field of ecology, a subset of Earth system science, that takes a holistic approach to the study of ecological systems, especially ecosystems. Systems ecology can be seen as an application of general systems theory to ecology. Central to the systems ecology approach is the idea that an ecosystem is a complex system exhibiting emergent properties. Systems ecology focuses on interactions and transactions within and between biological and ecological systems, and is especially concerned with the way the functioning of ecosystems can be influenced by human interventions. It uses and extends concepts from thermodynamics and develops other macroscopic descriptions of complex systems.
Systems ecology seeks a holistic view of the interactions and transactions within and between biological and ecological systems. Systems ecologists realise that the function of any ecosystem can be influenced by human economics in fundamental ways. They have therefore taken an additional transdisciplinary step by including economics in the consideration of ecological-economic systems. In the words of R.L. Kitching:
Systems ecology can be defined as the approach to the study of ecology of organisms using the techniques and philosophy of systems analysis: that is, the methods and tools developed, largely in engineering, for studying, characterizing and making predictions about complex entities, that is, systems..
In any study of an ecological system, an essential early procedure is to draw a diagram of the system of interest ... diagrams indicate the system's boundaries by a solid line. Within these boundaries, series of components are isolated which have been chosen to represent that portion of the world in which the systems analyst is interested ... If there are no connections across the systems' boundaries with the surrounding systems environments, the systems are described as closed. Ecological work, however, deals almost exclusively with open systems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The class introduces the concept of circular economy and its applications to building design, with a focus on design with reused components, design for disassembly, and life-cycle assessment. The clas
This course provides the bases to understand material and energy production and consumption processes. Students learn how to develop a material flow analysis and apply it to cases of resource manageme
The course will provide the ecological systems' knowledge needed to question applied sustainability solutions. We will critically assess the complexity of current environmental issues, illustrating ba
Well beyond the impact of climate change, anthropogenic modifications of the Vietnam Mekong Delta's ecosystems have resulted in environmental degradation and subsequent loss in ecosystems. The environmental impacts include but are not limited to accelerate ...
The provision of decent housing for all is a core sustainable development goal (SDG) and a fundamental human right. However, the construction sector is the world's largest consumer of raw materials, and 40% of global CO2 emissions are attributed to housing ...
Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres: the biosphere, hydrosphere, atmosphere, and geosphere (or lithosphere). Earth science can be considered to be a branch of planetary science, but with a much older history. There are reductionist and holistic approaches to Earth sciences.
Thermoeconomics, also referred to as biophysical economics, is a school of heterodox economics that applies the laws of statistical mechanics to economic theory. Thermoeconomics can be thought of as the statistical physics of economic value and is a subfield of econophysics. It is the study of the ways and means by which human societies procure and use energy and other biological and physical resources to produce, distribute, consume and exchange goods and services, while generating various types of waste and environmental impacts.
Emergy is the amount of energy consumed in direct and indirect transformations to make a product or service. Emergy is a measure of quality differences between different forms of energy. Emergy is an expression of all the energy used in the work processes that generate a product or service in units of one type of energy. Emergy is measured in units of emjoules, a unit referring to the available energy consumed in transformations. Emergy accounts for different forms of energy and resources (e.g.
Delves into urban metabolism, circular economy policies, and material stocks in cities, emphasizing the interplay between environmental assessment and urban functioning.
This paper introduces the background, concept and definition of the Industry Commons. It initiates a discussion on the positioning of the Industry Commons Ecosystem (ICE) with respect to current research directions in advanced manufacturing and production ...