In astronomy, the initial mass function (IMF) is an empirical function that describes the initial distribution of masses for a population of stars during star formation. IMF not only describes the formation and evolution of individual stars, it also serves as an important link that describes the formation and evolution of galaxies. The IMF is often given as a probability density function (PDF) that describes the probability of a star that has a certain mass. It differs from the present-day mass function (PDMF), which describes the current distribution of masses of stars, such as red giants, white dwarfs, neutron stars, and black holes, after a period of time of evolution away from the main sequence stars. IMF is derived from the luminosity function while PDMF is derived from the present-day luminosity function. IMF and PDMF can be linked through the "stellar creation function". Stellar creation function is defined as the number of stars per unit volume of space in a mass range and a time interval. For all the main sequence stars have greater lifetimes than the galaxy, IMF and PDMF are equivalent. Similarly, IMF and PDMF are equivalent in brown dwarfs due to their unlimited lifetimes. The properties and evolution of a star are closely related to its mass, so the IMF is an important diagnostic tool for astronomers studying large quantities of stars. For example, the initial mass of a star is the primary factor of determining its colour, luminosity, radius, radiation spectrum, and quantity of materials and energy it emitted into interstellar space during its lifetime. At low masses, the IMF sets the Milky Way Galaxy mass budget and the number of substellar objects that form. At intermediate masses, the IMF controls chemical enrichment of the interstellar medium. At high masses, the IMF sets the number of core collapse supernovae that occur and therefore the kinetic energy feedback. The IMF is relatively invariant from one group of stars to another, though some observations suggest that the IMF is different in different environments, and potentially dramatically different in early galaxies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (18)
Introduction to Astrophysics: Stellar EvolutionMOOC: Introduction to Astrophysics
Covers stellar evolution, fusion processes, and the age of stellar clusters, emphasizing gas pressures and star evolution based on mass.
Star Formation: Jeans Mass and CollapseMOOC: Introduction to Astrophysics
Explores star formation through Jeans mass, collapse, free fall time, and gravitational contraction in astrophysics.
Jeans' Radius and Mass: Introduction to AstrophysicsMOOC: Introduction to Astrophysics
Explores Jeans' radius and mass, free-fall time, and gravitational contraction in astrophysics.
Show more
Related publications (79)
Related concepts (2)
Star formation
Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy.
Astronomy
Astronomy is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroid, asteroid, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere.
Related MOOCs (5)
Introduction to Astrophysics
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction à l'Astrophysique
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction to Astrophysics
Learn about the physical phenomena at play in astronomical objects and link theoretical predictions to observations.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.