In physics, a string is a physical entity postulated in string theory and related subjects. Unlike elementary particles, which are zero-dimensional or point-like by definition, strings are one-dimensional extended entities. Researchers often have an interest in string theories because theories in which the fundamental entities are strings rather than point particles automatically have many properties that some physicists expect to hold in a fundamental theory of physics. Most notably, a theory of strings that evolve and interact according to the rules of quantum mechanics will automatically describe quantum gravity.
In string theory, the strings may be open (forming a segment with two endpoints) or closed (forming a loop like a circle) and may have other special properties. Prior to 1995, there were five known versions of string theory incorporating the idea of supersymmetry (these five are known as superstring theories) and two versions without supersymmetry known as bosonic string theories, which differed in the type of strings and in other aspects. Today these different s superstring theories are thought to arise as different limiting cases of a single theory called M-theory.
In string theories of particle physics, the strings are very tiny; much smaller than can be observed in today's particle accelerators. The characteristic length scale of strings is typically on the order of the Planck length, about 10−35 meter, the scale at which the effects of quantum gravity are believed to become significant. Therefore on much larger length scales, such as the scales visible in physics laboratories, such entities would appear to be zero-dimensional point particles. Strings are able to vibrate as harmonic oscillators, and different vibrational states of the same string are interpreted as different types of particles. In string theories, strings vibrating at different frequencies constitute the multiple fundamental particles found in the current Standard Model of particle physics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
The goal of this class is to teach how to look at two-dimensional field theories, how to analyse them, how to put structures on them. In the end, the student should have a good picture into what we un
We use the S-matrix bootstrap to carve out the space of unitary, crossing symmetric and supersymmetric graviton scattering amplitudes in ten dimensions. We focus on the leading Wilson coefficient a controlling the leading correction to maximal supergravity ...
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity. Since the second superstring revolution, the five superstring theories (Type I, Type IIA, Type IIB, HO and HE) are regarded as different limits of a single theory tentatively called M-theory.
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the D. A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory.
In theoretical physics, T-duality (short for target-space duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories describes strings propagating in a spacetime shaped like a circle of some radius , while the other theory describes strings propagating on a spacetime shaped like a circle of radius proportional to . The idea of T-duality was first noted by Bala Sathiapalan in an obscure paper in 1987.
A metastable cosmic-string network is a generic consequence of many grand unified theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically stable, but decay on cosmic time scales due to pair production of GUT mon ...
Conformal field theories (CFTs) play a very significant role in modern physics, appearing in such diverse fields as particle physics, condensed matter and statistical physics and in quantum gravity both as the string worldsheet theory and through the AdS/C ...