In theoretical physics, T-duality (short for target-space duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories describes strings propagating in a spacetime shaped like a circle of some radius , while the other theory describes strings propagating on a spacetime shaped like a circle of radius proportional to . The idea of T-duality was first noted by Bala Sathiapalan in an obscure paper in 1987. The two T-dual theories are equivalent in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, momentum in one description takes discrete values and is equal to the number of times the string winds around the circle in the dual description.
The idea of T-duality can be extended to more complicated theories, including superstring theories. The existence of these dualities implies that seemingly different superstring theories are actually physically equivalent. This led to the realization, in the mid-1990s, that all of the five consistent superstring theories are just different limiting cases of a single eleven-dimensional theory called M-theory.
In general, T-duality relates two theories with different spacetime geometries. In this way, T-duality suggests a possible scenario in which the classical notions of geometry break down in a theory of Planck scale physics. The geometric relationships suggested by T-duality are also important in pure mathematics. Indeed, according to the SYZ conjecture of Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, T-duality is closely related to another duality called mirror symmetry, which has important applications in a branch of mathematics called enumerative algebraic geometry.
T-duality is a particular example of a general notion of duality in physics. The term duality refers to a situation where two seemingly different physical systems turn out to be equivalent in a nontrivial way.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.
In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometric objects called Calabi–Yau manifolds. The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory. Early cases of mirror symmetry were discovered by physicists.
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity. Since the second superstring revolution, the five superstring theories (Type I, Type IIA, Type IIB, HO and HE) are regarded as different limits of a single theory tentatively called M-theory.
We report on a new topological vortex solution in U(1) x U(1) Maxwell-Chern-Simons theory. The existence of the vortex is envisaged by analytical means, and a numerical solution is obtained by integrating the equations of motion. These vortices have a long ...
Amer Physical Soc2015
Spatial compactification on R(3)xS(L)(1), at small S-1-size L often leads to a calculable vacuum structure, where various "topological molecules" are responsible for confinement and the realization of the center and discrete chiral symmetries. Within this ...
We study the geometry of the scalar manifolds emerging in the no-scale sector of Kahler moduli and matter fields in generic Calabi-Yau string compactifications, and describe its implications on scalar masses. We consider both heterotic and orientifold mode ...