Summary
In mathematics, an algebra homomorphism is a homomorphism between two algebras. More precisely, if A and B are algebras over a field (or a ring) K, it is a function such that, for all k in K and x, y in A, one has The first two conditions say that F is a K-linear map, and the last condition says that F preserves the algebra multiplication. So, if the algebras are associative, F is a rng homomorphism, and, if the algebras are rings and F preserves the identity, it is a ring homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B. If A and B are two unital algebras, then an algebra homomorphism is said to be unital if it maps the unity of A to the unity of B. Often the words "algebra homomorphism" are actually used to mean "unital algebra homomorphism", in which case non-unital algebra homomorphisms are excluded. A unital algebra homomorphism is a (unital) ring homomorphism. Every ring is a -algebra since there always exists a unique homomorphism . See Associative algebra#Examples for the explanation. Any homomorphism of commutative rings gives the structure of a commutative R-algebra. Conversely, if S is a commutative R-algebra, the map is a homomorphism of commutative rings. It is straightforward to deduce that the of the commutative rings over R is the same as the category of commutative -algebras. If A is a subalgebra of B, then for every invertible b in B the function that takes every a in A to b−1 a b is an algebra homomorphism (in case , this is called an inner automorphism of B). If A is also simple and B is a central simple algebra, then every homomorphism from A to B is given in this way by some b in B; this is the Skolem–Noether theorem.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.