An Essay towards solving a Problem in the Doctrine of Chances
Summary
An Essay towards solving a Problem in the Doctrine of Chances is a work on the mathematical theory of probability by Thomas Bayes, published in 1763, two years after its author's death, and containing multiple amendments and additions due to his friend Richard Price. The title comes from the contemporary use of the phrase "doctrine of chances" to mean the theory of probability, which had been introduced via the title of a book by Abraham de Moivre. Contemporary reprints of the Essay carry a more specific and significant title: A Method of Calculating the Exact Probability of All Conclusions founded on Induction.
The essay includes theorems of conditional probability which form the basis of what is now called Bayes's Theorem, together with a detailed treatment of the problem of setting a prior probability.
Bayes supposed a sequence of independent experiments, each having as its outcome either success or failure, the probability of success being some number p between 0 and 1. But then he supposed p to be an uncertain quantity, whose probability of being in any interval between 0 and 1 is the length of the interval. In modern terms, p would be considered a random variable uniformly distributed between 0 and 1. Conditionally on the value of p, the trials resulting in success or failure are independent, but unconditionally (or "marginally") they are not. That is because if a large number of successes are observed, then p is more likely to be large, so that success on the next trial is more probable. The question Bayes addressed was: what is the conditional probability distribution of p, given the numbers of successes and failures so far observed. The answer is that its probability density function is
(and ƒ(p) = 0 for p < 0 or p > 1) where k is the number of successes so far observed, and n is the number of trials so far observed. This is what today is called the Beta distribution with parameters k + 1 and n − k + 1.
Bayes's preliminary results in conditional probability (especially Propositions 3, 4 and 5) imply the truth of the theorem that is named for him.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
Thomas Bayes (beɪz ; 1701 7 April 1761) was an English statistician, philosopher and Presbyterian minister who is known for formulating a specific case of the theorem that bears his name: Bayes' theorem. Bayes never published what would become his most famous accomplishment; his notes were edited and published posthumously by Richard Price. Thomas Bayes was the son of London Presbyterian minister Joshua Bayes, and was possibly born in Hertfordshire. He came from a prominent nonconformist family from Sheffield.
A prior probability distribution of an uncertain quantity, often simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable.
Bayesian statistics (ˈbeɪziən or ˈbeɪʒən ) is a theory in the field of statistics based on the Bayesian interpretation of probability where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation that views probability as the limit of the relative frequency of an event after many trials.
Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show ...
In distributionally robust optimization the probability distribution of the uncertain problem parameters is itself uncertain, and a fictitious adversary, e.g., nature, chooses the worst distribution from within a known ambiguity set. A common shortcoming o ...
We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven d ...