In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.
The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of , although this is in yet more abstract terms.
Free objects are the direct generalization to of the notion of basis in a vector space. A linear function u : E1 → E2 between vector spaces is entirely determined by its values on a basis of the vector space E1. The following definition translates this to any category.
A is a category that is equipped with a faithful functor to Set, the . Let C be a concrete category with a faithful functor U : C → Set. Let X be a set (that is, an object in Set), which will be the basis of the free object to be defined. A free object on X is a pair consisting of an object in C and an injection (called the canonical injection), that satisfies the following universal property:
For any object B in C and any map between sets , there exists a unique morphism in C such that . That is, the following diagram commutes:
If free objects exist in C, the universal property implies every map between two sets induces a unique morphism between the free objects built on them, and this defines a functor . It follows that, if free objects exist in C, the functor F, called the free functor is a left adjoint to the forgetful functor U; that is, there is a bijection
The creation of free objects proceeds in two steps. For algebras that conform to the associative law, the first step is to consider the collection of all possible words formed from an alphabet. Then one imposes a set of equivalence relations upon the words, where the relations are the defining relations of the algebraic object at hand.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers.
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products.
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. A main tool for this study is the construction of a correspondence functor associated to any finite latt ...
We determine the dimension of every simple module for the algebra of the monoid of all relations on a finite set (i.e. Boolean matrices). This is in fact the same question as the determination of the dimension of every evaluation of a simple correspondence ...
This work aims to study the effects of wind uncertainties in civil engineering structural design. Optimising the design of a structure for safety or operability without factoring in these uncertainties can result in a design that is not robust to these per ...