Concept

# Free object

Summary
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of , although this is in yet more abstract terms. Definition Free objects are the direct generalization to of the notion of basis in a vector space. A linear function u : E1 → E2 between vector spaces is entirely determined by its values on a basis of the vector space E1. The following definition translates this to any category. A is a category that is equipped with a faithful functor to Set, the . Let C b
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units