Analytic number theoryIn mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem).
Lagrange's four-square theoremLagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares. That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows: This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.
Additive number theoryAdditive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers.
Fermat polygonal number theoremIn additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive basis of order n. Three such representations of the number 17, for example, are shown below: 17 = 10 + 6 + 1 (triangular numbers) 17 = 16 + 1 (square numbers) 17 = 12 + 5 (pentagonal numbers).
G. H. HardyGodfrey Harold Hardy (7 February 1877 – 1 December 1947) was an English mathematician, known for his achievements in number theory and mathematical analysis. In biology, he is known for the Hardy–Weinberg principle, a basic principle of population genetics. G. H. Hardy is usually known by those outside the field of mathematics for his 1940 essay A Mathematician's Apology, often considered one of the best insights into the mind of a working mathematician written for the layperson.
Harold DavenportHarold Davenport FRS (30 October 1907 – 9 June 1969) was an English mathematician, known for his extensive work in number theory. Born on 30 October 1907 in Huncoat, Lancashire, Davenport was educated at Accrington Grammar School, the University of Manchester (graduating in 1927), and Trinity College, Cambridge. He became a research student of John Edensor Littlewood, working on the question of the distribution of quadratic residues.
Pierre de FermatPierre de Fermat (pjɛʁ də fɛʁma; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory.
Number theoryNumber theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers).