Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Théorème des quatre carrés de LagrangeLe théorème des quatre carrés de Lagrange, également connu sous le nom de conjecture de Bachet, s'énonce de la façon suivante : Tout entier positif peut s'exprimer comme la somme de quatre carrés. Plus formellement, pour tout entier positif n, il existe des entiers a, b, c, d tels que : n = a + b + c + d. Il correspond à une équation diophantienne qui se résout avec les techniques de l'arithmétique modulaire.
Théorie additive des nombresLa théorie additive des nombres est une branche de la théorie des nombres où sont étudiées des parties de l'ensemble des entiers, et leur comportement vis-à-vis de l'addition. Plus abstraitement, ce domaine inclut l'étude des groupes abéliens et des demi-groupes commutatifs, dont la loi interne est alors notée additivement. Il a des liens étroits avec la combinatoire arithmétique et la géométrie des nombres. Le principal objet d'étude est la somme d'ensembles : somme de deux parties A et B d'un groupe abélien et somme itérée d'une partie A avec elle-même.
Théorème des nombres polygonaux de FermatEn théorie additive des nombres, le théorème des nombres polygonaux de Fermat indique que tout entier naturel est une somme d'au plus n nombres n-gonaux. C'est-à-dire que tout entier positif peut être écrit comme la somme de trois nombres triangulaires ou moins, et comme la somme de quatre nombres carrés ou moins, et comme la somme de cinq nombres pentagonaux ou moins, et ainsi de suite. Par exemple, trois représentations du nombre 17, sont montrées ci-dessous : 17 = 10 + 6 + 1 (nombres triangulaires) ; 17 = 16 + 1 (nombres carrés) ; 17 = 12 + 5 (nombres pentagonaux).
Godfrey Harold HardyGodfrey Harold Hardy est un mathématicien britannique, né le à Cranleigh (comté de Surrey) et mort le à Cambridge. Il est lauréat de la médaille Sylvester en 1940 et de la médaille Copley en 1947 ; il est connu pour ses travaux en théorie des nombres et en analyse.
Harold DavenportHarold Davenport (1907-1969) est un mathématicien britannique célèbre pour son travail en théorie des nombres. Né dans le village de Huncoat dans le Lancashire, il fait ses études à Accrington et au Trinity Collège de Cambridge. Sa thèse, dirigée par John Edensor Littlewood, porte sur la distribution des résidus quadratiques. En s'attaquant à la question des distributions, il tombe rapidement sur des problèmes qui sont considérés comme des cas particuliers de ceux qui se posent pour la fonction zêta locale dans le cas de certaines courbes hyperelliptiques telles que : Y2 = X(X − 1) (X − 2) .
Pierre de FermatPierre de Fermat, né dans la première décennie du , à Beaumont-de-Lomagne (département actuel de Tarn-et-Garonne), près de Montauban, et mort le à Castres (département actuel du Tarn), est un magistrat, polymathe et surtout mathématicien français, surnommé « le prince des amateurs ». Il est aussi poète, habile latiniste et helléniste, et s'est intéressé aux sciences et en particulier à la physique ; on lui doit notamment le principe de Fermat en optique.
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.